首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular smooth muscle caldesmon   总被引:10,自引:0,他引:10  
Caldesmon, a major actin- and calmodulin-binding protein, has been identified in diverse bovine tissues, including smooth and striated muscles and various nonmuscle tissues, by denaturing polyacrylamide gel electrophoresis of tissue homogenates and immunoblotting using rabbit anti-chicken gizzard caldesmon. Caldesmon was purified from vascular smooth muscle (bovine aorta) by heat treatment of a tissue homogenate, ion-exchange chromatography, and affinity chromatography on a column of immobilized calmodulin. The isolated protein shared many properties in common with chicken gizzard caldesmon: immunological cross-reactivity, Ca2+-dependent interaction with calmodulin, Ca2+-independent interaction with F-actin, competition between actin and calmodulin for caldesmon binding only in the presence of Ca2+, and inhibition of the actin-activated Mg2+-ATPase activity of smooth muscle myosin without affecting the phosphorylation state of myosin. Maximal binding of aorta caldesmon to actin occurred at 1 mol of caldesmon: 9-10 mol of actin, and binding was unaffected by tropomyosin. Half-maximal inhibition of the actin-activated myosin Mg2+-ATPase occurred at approximately 1 mol of caldesmon: 12 mol of actin. This inhibition was also unaffected by tropomyosin. Caldesmon had no effect on the Mg2+-ATPase activity of smooth muscle myosin in the absence of actin. Bovine aorta and chicken gizzard caldesmons differed in several respects: Mr (149,000 for bovine aorta caldesmon and 141,000 for chicken gizzard caldesmon), extinction coefficient (E1%280nm = 19.5 and 5.0 for bovine aorta and chicken gizzard caldesmon, respectively), amino acid composition, and one-dimensional peptide maps obtained by limited chymotryptic and Staphylococcus aureus V8 protease digestion. In a competitive enzyme-linked immunosorbent assay, using anti-chicken gizzard caldesmon, a 174-fold molar excess of bovine aorta caldesmon relative to chicken gizzard caldesmon was required for half-maximal inhibition. These studies establish the widespread tissue and species distribution of caldesmon and indicate that vascular smooth muscle caldesmon exhibits physicochemical differences yet structural and functional similarities to caldesmon isolated from chicken gizzard.  相似文献   

2.
Smooth muscle myosin was purified from turkey gizzards with the 20,000-dalton light chains in the unphosphorylated state. The actin-activated MgATPase activity was 4 nmol/min/mg at 25 degrees C. When the myosin was phosphorylated to 2 mol of Pi/mol of myosin using purified myosin light chain kinase, calmodulin, and ATP, the actin-activated MgATPase activity rose to 51 nmol/min/mg. Complete dephosphorylation of the same myosin by a purified phosphatase lowered the activity to 5 nmol/min/mg, and complete rephosphorylation of the myosin following inhibition of the phosphatase raised it again to 46 nmol/min/mg. Human platelet myosin could be substituted for turkey gizzard myosin, with similar results. A chymotryptic fragment of smooth muscle myosin which retains the phosphorylated site on the 20,000-dalton light chain of myosin was prepared. Using the same scheme for reversible phosphorylation, this smooth muscle heavy meromyosin was found to show the same positive correlation between phosphorylation of the myosin light chain and the actin-activated MgATPase activity. The results with smooth muscle heavy meromyosin show that the effect of phosphorylation on the actin-activated MgATPase activity can be separated from the effects of phosphorylation on myosin filament assembly.  相似文献   

3.
Application of the myosin competition test (Lehman, W., and Szent-Gy?rgyi, A. G. (1975) J. Gen. Physiol. 66, 1-30) to chicken gizzard actomyosin indicated that this smooth muscle contains a thin filament-linked regulatory mechanism. Chicken gizzard thin filaments, isolated as described previously (Marston, S. B., and Lehman, W. (1985) Biochem. J. 231, 517-522), consisted almost exclusively of actin, tropomyosin, caldesmon, and an unidentified 32-kilodalton polypeptide in molar ratios of 1:1/6:1/26:1/17, respectively. When reconstituted with phosphorylated gizzard myosin, these thin filaments conferred Ca2+ sensitivity (67.8 +/- 2.1%; n = 5) on the myosin Mg2+-ATPase. On the other hand, no Ca2+ sensitivity of the myosin Mg2+-ATPase was observed when purified gizzard actin or actin plus tropomyosin was reconstituted with phosphorylated gizzard myosin. Native thin filaments were rendered essentially free of caldesmon and the 32-kilodalton polypeptide by extraction with 25 mM MgCl2. When reconstituted with phosphorylated gizzard myosin, caldesmon-free thin filaments and native thin filaments exhibited approximately the same Ca2+ sensitivity (45.1 and 42.7%, respectively). The observed Ca2+ sensitivity appears, therefore, not to be due to caldesmon. Only trace amounts of two Ca2+-binding proteins could be detected in native thin filaments. These were identified as calmodulin (present at a molar ratio to actin of 1:733) and the 20-kilodalton light chain of myosin (present at a molar ratio to actin of 1:270). The Ca2+ sensitivity observed in an in vitro system reconstituted from gizzard thin filaments and either skeletal myosin or phosphorylated gizzard myosin is due, therefore, to calmodulin and/or an unidentified minor protein component of the thin filaments which may be an actin-binding protein involved in regulating actin filament structure in a Ca2+-dependent manner.  相似文献   

4.
Calcium ions produce a 3-4-fold stimulation of the actin-activated ATPase activities of phosphorylated myosin from bovine pulmonary artery or chicken gizzard at 37 degrees C and at physiological ionic strengths, 0.12-0.16 M. Actins from either chicken gizzard or rabbit skeletal muscle stimulate the activity of phosphorylated myosin in a Ca2+-dependent manner, indicating that the Ca2+ sensitivity involves myosin or a protein associated with it. Partial loss of Ca2+ sensitivity upon treatment of phosphorylated gizzard myosin with low concentrations of chymotrypsin and the lack of any change on similar treatment of actin supports the above conclusion. Although both actins enhance ATPase activity, activation by gizzard actin exhibits Ca2+ dependence at higher temperatures or lower ionic strengths than does activation by skeletal muscle actin. The Ca2+ dependence of the activity of phosphorylated heavy meromyosin is about half that of myosin and is affected differently by temperature, ionic strength and Mg2+, being independent of temperature and optimal at lower concentrations of NaCl. Raising the concentration of Mg2+ above 2-3 mM inhibits the activity of heavy meromyosin but stimulates that of myosin, indicating that Mg2+ and Ca2+ activate myosin at different binding sites.  相似文献   

5.
C Y Wang  P K Ngai  M P Walsh  J H Wang 《Biochemistry》1987,26(4):1110-1117
Fodrin, a spectrin-like actin and calmodulin binding protein, was purified to electrophoretic homogeneity from a membrane fraction of bovine brain. The effect of fodrin on smooth muscle actomyosin Mg2+-ATPase activity was examined by using a system reconstituted from skeletal muscle actin and smooth muscle myosin and regulatory proteins. The simulation of actomyosin Mg2+-ATPase by fodrin showed a biphasic dependence on fodrin concentration and on the time of actin and myosin preincubation at 30 degrees C. Maximal stimulation (50-70%) was obtained at 3 nM fodrin following 10 min of preincubation of actin and myosin. This stimulation was also dependent on the presence of tropomyosin. In the absence of myosin light chain kinase, the fodrin stimulation of Mg2+-ATPase could not be demonstrated with normal actomyosin but could be demonstrated with acto-thiophosphorylated myosin, suggesting that fodrin stimulation depends on the phosphorylation of myosin. Fodrin stimulation was shown to require the presence of both Ca2+ and calmodulin when acto-thiophosphorylated myosin was used. These observations suggest a possible functional role of fodrin in the regulation of smooth muscle contraction and demonstrate an effect on Ca2+ and calmodulin on fodrin function.  相似文献   

6.
Tropomyosins from bovine aorta and pulmonary artery exhibit identical electrophoretic patterns in sodium dodecyl sulfate but differ from tropomyosins of either chicken gizzard or rabbit skeletal muscle. Each of the four tropomyosins binds readily to skeletal muscle F-actin as indicated by their sedimentation with actin and by their ability to maximally stimulate or inhibit actin-activated ATPase activity at a molar ratio of one tropomyosin per seven actin monomers. Smooth and skeletal muscle tropomyosins differ in their effects on activity of skeletal myosin or heavy meromyosin (HMM); the former can enhance activity under conditions in which the latter inhibits. Gizzard and arterial tropomyosins are usually equally effective in stimulating ATPase activity of skeletal acto-HMM, but at high concentrations of Mg2+ gizzard tropomyosin is more effective, a result that cannot be attributed to differences in the binding of the two tropomyosins to F-actin. The effects of tropomyosin also depend on the type of myosin; tropomyosin enhances activity of gizzard myosin under conditions in which it inhibits that of skeletal myosin. Increasing the pH or the Mg2+ concentration can reverse the effect of tropomyosin on actin-stimulated ATPase activity of skeletal HMM from activation to inhibition, but this reversal is not found with gizzard myosin. Activity in the absence of tropomyosin is independent of pH, and the loss of activation with increasing pH is not accompanied by loss of binding of tropomyosin to actin.  相似文献   

7.
Actin, myosin, and "native" tropomyosin (NTM) were separately isolated from chicken gizzard muscle and rabbit skeletal muscle. With various combinations of the isolated contractile proteins, Mg-ATPase activity and superprecipitation activity were measured. It was thus found that gizzard myosin and gizzard NTM behaved differently from skeletal myosin and skeletal NTM, whereas gizzard actin functioned in the same wasy as skeletal actin. It was also found that gizzard myosin preparations were often Ca-sensitive, that is, that the two activities of gizzard myosin plus actin without NTM were activated by low concentrations of Ca2+. The Mg-ATPase activity of a Ca-insensitive preparation of gizzard myosin was not activated by actin even in the presence of Ca2+. When Ca-sensitive gizzard myosin was incubated with ATP (and Mg2+) in the presence of Ca2+, a light-chain component of gizzard myosin was phosphorylated. The light-chain phosphorylation also occurred when Ca-insensitive myosin was incubated with gizzard NTM and ATP (plus Mg2+) in the presence of Ca2+. In either case, the light-chain phosphorylation required Ca2+. Phosphorylated gizzard myosin in combination with actin was able to exhibit superprecipitation, and Mg-ATPase of the phosphorylated gizzard myosin was activated by actin; the actin activation and superprecipitation were found to occur even in the absence of Ca2+ and NTM or tropomyosin. The phosphorylated light-chain component was found to be dephosphorylated by a partially purified preparation of gizzard myosin light-chain phosphatase. Gizzard myosin thus dephosphorylated behaved exactly like untreated Ca-insensitive gizzard myosin; in combination with actin, it did not superprecipitate either in the presence of Ca2+ or in its absence, but did superprecipitated in the presence of NTM and Ca2+. Ca-activated hydrolysis of ATP catalyzed by gizzard myosin B proceeded at a reduced rate after removal of Ca2+ (by adding EGTA), whereas that catalyzed by a combination of actin, gizzard myosin, and gizzard NTM proceeded at the same rate even after removal of Ca2+. However, addition of a partially purified preparation of gizzard myosin light-chain phosphatase was found to make the recombined system behave like myosin B. Based on these findings, it appears that myosin light-chain kinase and myosin light-chain phosphatase can function as regulatory proteins for contraction and relaxation, respectively, of gizzard muscle.  相似文献   

8.
Heavy meromyosin subfragment-1 from human platelets and chicken gizzard exhibited an identical chromatographic pattern on agarose-ATP columns both in the absence and in the presence of Ca2+ and Mg2+. In the presence of Ca2+, the behavior differed from that of rabbit white skeletal muscle subfragment-1. The reaction of lysyl residues of platelet myosin with 2,4,6-trinitrobenzene sulfonate did not affect the K+- or Mg2+-stimulated ATPase activity. A similar behavior was exhibited by chicken gizzard myosin whereas trinitrophenylation of the more active lysyl residues in skeletal muscle myosin caused a marked increase in Mg2+-stimulated and a decrease in K+-stimulated ATPase activity. These features may point to a similar location of the essential lysyl residue in platelet and smooth muscle myosin, which is different from that of skeletal muscle. Alkylation of thiol groups by N-ethyl maleimide in the absence of added nucleotides resulted in a loss of K+-ATPase and in an increase in the Ca2+-ATPase in all three myosins, the increase for the skeletal myosin being much greater than for the platelet and chicken gizzard preparations. Alkylation of myosin in the presence of MgADP led to a decrease in K+-ATPase of all preparations whereas the Ca2+-ATPase as a function of time exhibited a maximum for the platelet and skeletal muscle proteins. These features may point to a certain similarity with respect to the active site of platelet and smooth muscle myosins and a difference between these and skeletal muscle myosin.  相似文献   

9.
Myosin light chain kinase purified from chicken white skeletal muscle (Mr = 150,000) was significantly larger than both rabbit skeletal (Mr = 87,000) and chicken gizzard smooth (Mr = 130,000) muscle myosin light chain kinases, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Km and Vmax values with rabbit or chicken skeletal, bovine cardiac, and chicken gizzard smooth muscle myosin P-light chains were very similar for the chicken and rabbit skeletal muscle myosin light chain kinases. In contrast, comparable Km and Vmax data for the chicken gizzard smooth muscle myosin light chain kinase showed that this enzyme was catalytically very different from the two skeletal muscle kinases. Affinity-purified antibodies to rabbit skeletal muscle myosin light chain kinase cross-reacted with chicken skeletal muscle myosin light chain kinase, but the titer of cross-reacting antibodies was approximately 20-fold less than the anti-rabbit skeletal muscle myosin light chain kinase titer. There was no detectable antibody cross-reactivity against chicken gizzard myosin light chain kinase. Proteolytic digestion followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or high performance liquid chromatography showed that these enzymes are structurally very different with few, if any, overlapping peptides. These data suggest that, although chicken skeletal muscle myosin light chain kinase is catalytically very similar to rabbit skeletal muscle myosin light chain kinase, the two enzymes have different primary sequences. The two skeletal muscle myosin light chain kinases appear to be more similar to each other than either is to chicken gizzard smooth muscle myosin light chain kinase.  相似文献   

10.
A phosphatase that dephosphorylates myosin and the isolated light chain has been purified to near homogeneity from chicken gizzard smooth muscle. The molecular weight of the enzyme was estimated to be 100,000 and 35,000 under native and denatured conditions, respectively. It requires Mg2+ or Mn2+. The activity was measured quantitatively with a coupled enzyme system with the aid of myosin light chain kinase. The Vm and Km were determined to be 23.4 mumol/mg/min and 4.2 microM, respectively, with the isolated light chain as substrate under the optimal conditions (5 mM Mg2+ at pH 8.45). The specific activity with myosin as substrate at a concentration of 0.9 microM was found to be 1.25 mumol/mg/min, which was about one-fifth of the activity for the isolated light chain under the same conditions. The phosphatase seems to be specific to gizzard myosin. It may play an important role in the regulation of the myosin-actin interaction in smooth muscle.  相似文献   

11.
Potentiation of actomyosin ATPase activity by filamin   总被引:2,自引:0,他引:2  
It was found that thin filaments from chicken gizzard muscle activate skeletal muscle myosin Mg2+-ATPase to a greater extent than does the complex of chicken gizzard actin and tropomyosin. The protein factor responsible for this additional activation has been now identified as the high Mr actin binding protein, filamin.  相似文献   

12.
Caldesmon, a major calmodulin- and actin-binding protein of smooth muscle (Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 5652-5655), has been obtained in highly purified form from chicken gizzard by a modification of a previously published procedure (Ngai, P. K., Carruthers, C. A., and Walsh, M. P. (1984) Biochem. J. 218, 863-870) and was found to cause a significant inhibition of both superprecipitation and actin-activated myosin Mg2+-ATPase activity in a system reconstituted from the purified contractile and regulatory proteins without influencing the phosphorylation state of myosin. This inhibitory effect was seen both in the presence and absence of tropomyosin. A Ca2+-and calmodulin-dependent kinase which catalyzed phosphorylation of caldesmon was identified in chicken gizzard; this kinase is distinct from myosin light-chain kinase. Caldesmon prepared by calmodulin-Sepharose affinity chromatography was contaminated with caldesmon kinase activity and was unable to inhibit actomyosin ATPase activity or superprecipitation. Phosphatase activity capable of dephosphorylating caldesmon was also identified in smooth muscle. These results indicate that caldesmon can inhibit smooth muscle actomyosin ATPase activity in vitro, and this function may itself be subject to regulation by reversible phosphorylation of caldesmon.  相似文献   

13.
Various aspects of actin--myosin interaction were studied with actin preparations from two types of smooth muscle: bovine aorta and chicken gizzard, and from two types of sarcomeric muscle: bovine cardiac and rabbit skeletal. All four preparations activated the Mg2+-ATPase activity of skeletal muscle myosin to the same Vmax, but the Kapp for the smooth muscle preparations was higher. At low KCl, pH 8.0 and millimolar substrate concentrations the Kapp values differed by a factor of 2.5. This differential behaviour of the four actin preparations correlates with amino acid substitutions at positions 17 and 89 of actin polypeptide chain, differentiating the smooth-muscle-specific gamma and alpha isomers from cardiac and skeletal-muscle-specific alpha isomers. This correlation provides evidence for involvement of the NH2-terminal portion of the actin polypeptide chain in the interaction with myosin. The differences in the activation of myosin ATPase by various actins were sensitive to changes in the substrate and KCl concentration and pH of the assay medium. Addition of myosin subfragment-1 or heavy meromyosin in the absence of nucleotide produced similar changes in the fluorescence of a fluorescent reagent N-(1-pyrenyl)-iodoacetamide, attached at Cys-374, or 1,N6-ethenoadenosine 5'-diphosphate substituted for the bound ADP in actin protomers in gizzard and skeletal muscle F-actin. The results are consistent with an influence of the amino acid substitutions on ionic interactions leading to complex formation between actin and myosin intermediates in the ATPase cycle but not on the associated states.  相似文献   

14.
Tropomyosin kinase is partially purified from 14-day-old chicken embryos using DEAE-cellulose, cellulose phosphate and gel filtration chromatography. The purest enzyme preparation consists of two major bands of Mr = 76,000 and 43,000 on SDS-polyacrylamide gel electrophoresis. The molecular weight of the enzyme is 250,000 determined by gel filtration chromatography. It phosphorylates casein and skeletal tropomyosin equally well but histone and phosvitin at a much slower rate. Smooth muscle myosin light chain, tropomyosin from platelet, erythrocyte and smooth muscle are not phosphorylated. The apparent Km for skeletal alpha-tropomyosin and ATP is 50 microM and 200 microM, respectively. Vmax varies between 100-300 nmol/min per mg depending on the purity of the preparation. Mg2+ and dithiothreitol are essential for activity but Ca+, calmodulin and cAMP are not required. The optimum temperature is 37 degrees C and optimum pH is about 7.5. Heparin, a potent inhibitor of casein kinase II, has no inhibitory effect on the enzyme. Similar tropomyosin kinase activity is not detected in skeletal muscle in adult rabbit and chicken. The tropomyosin kinase described here represents a hitherto uncharacterized kinase responsible for phosphorylation of tropomyosin in the chicken embryo.  相似文献   

15.
The heavy chain fragments generated by restricted proteolysis of the smooth chicken gizzard myosin subfragment-1 (S-1) with trypsin, Staphylococcus aureus V8 protease, and chymotrypsin were isolated and submitted to partial amino acid sequencing. The comparison between the smooth and striated muscle myosin sequences permitted the unambiguous structural characterization of the two protease-vulnerable segments joining the three putative domain-like regions of the smooth head heavy chain. The smooth carboxyl-terminal connector is a serine-rich region located around positions 632-640 of the rabbit skeletal sequence and would represent the "A" site that is conformationally sensitive to the myosin 10 S-6 transition and to its interaction with actin (Ikebe, M., and Hartshorne, D. J. (1986) Biochemistry 25, 6177-6185). A third site which undergoes a nucleotide-dependent chymotryptic cleavage which inactivates the Mg2+-ATPase (Okamoto, Y., and Sekine, T. (1981) J. Biochem. (Tokyo) 90, 833-842, 843-849) was identified at Trp-31/Ser-32. It is vicinal to Lys-34 that is monomethylated in the skeletal heavy chain but not at all in the smooth sequence. However, the two trimethyl lysine residues present in the skeletal sequence are conserved in the same regions of the smooth S-1 and may play a general functional role in myosin. The smooth central 50-kDa segment could be selectively destroyed by a mild tryptic digestion in the absence of any unfolding agent, with a concomitant inhibition of the ATPase activities. This feature is in line with the proposed domain structure of the S-1 heavy chain and also suggests a relationship between the specific biochemical properties of the smooth S-1 and the particular conformation of its 50-kDa region.  相似文献   

16.
Ca2+ and tropomyosin are required for activation of ATPase activity of phosphorylated gizzard myosin by gizzard actin at less than 1 mM Mg2+, relatively low Ca2+ concentrations (1 microM), producing half-maximal activation. At higher concentrations, Mg2+ will replace Ca2+, 4 mM Mg2+ increasing activity to the same extent as does Ca2+ and abolishing the Ca2+ dependence. Above about 1 mM Mg2+, tropomyosin is no longer required for activation by actin, activity being dependent on Ca2+ between 1 and 4 mM Mg2+, but independent of [Ca2+] above 4 mM Mg2+. Phosphorylation of the 20,000-Da light chain of gizzard myosin is required for activation of ATPase activity by actin from chicken gizzard or rabbit skeletal muscle at all concentrations of Mg2+ employed. The effect of adding or removing Ca2+ is fully reversible and cannot be attributed either to irreversible inactivation of actin or myosin or to dephosphorylation. After preincubating in the absence of Ca2+, activity is restored either by adding micromolar concentrations of this cation or by raising the concentration of Mg2+ to 8 mM. Similarly, the inhibition found in the absence of tropomyosin is fully reversed by subsequent addition of this protein. Replacing gizzard actin with skeletal actin alters the pattern of activation by Ca2+ at concentrations of Mg2+ less than 1 mM. Full activation is obtained with or without Ca2+ in the presence of tropomyosin, while in its absence Ca2+ is required but produces only partial activation. Without tropomyosin, the range of Mg2+ concentrations over which activity is Ca2+-dependent is restricted to lower values with skeletal than with gizzard actin. The activity of skeletal muscle myosin is activated by the gizzard actin-tropomyosin complex without Ca2+, although Ca2+ slightly increases activity. The Ca2+ sensitivity of reconstituted gizzard actomyosin is partially retained by hybrid actomyosin containing gizzard myosin and skeletal actin, but less Ca2+ dependence is retained in the hybrid containing skeletal myosin and gizzard actin.  相似文献   

17.
Myosin-linked calcium regulation in vertebrate smooth muscle.   总被引:10,自引:0,他引:10  
By the use of a new procedure, actomyosin may be extracted in high yield and purity from fowl gizzard which exhibits a calcium-dependent actin-activated ATPase activity comparable to that of the parent myofibril-like preparation. Studies of this vertebrate smooth muscle actomyosin show that the regulation of the actin-myosin interaction is effected, as in molluscan muscles, by the myosin molecule itself and not by an actin-linked regulatory system, as found in vertebrate skeletal muscle.Thus, calcium-sensitive smooth muscle actomyosin is composed of only myosin, actin and tropomyosin, any troponin-like components being absent. Myosin is the only component that binds significant amounts of calcium and shows a calcium-dependent actin-activated ATPase activity in the presence of F-actin from either gizzard or rabbit skeletal muscle.The cross-reaction of gizzard thin filaments with skeletal muscle myosin produces an actomyosin whose actin-activated ATPase is calcium-insensitive, showing that smooth muscle thin filaments do not serve a regulatory function.The effect of Mg2+ and pH, and evidence for the involvement of one of the myosin light chains in calcium regulation are described and discussed.  相似文献   

18.
Myosins purified from cardiac (porcine heart) and smooth (chicken gizzard) muscles were modified with 2,4,6-trinitrobenzenesulfonate (TNBS) and the effects on the kinetic properties of myosin ATPase [EC 3.6.1.3] were studied. The following results were obtained. 1. About 0.5 mol of TNBS per mol of myosin head was incorporated rapidly, irrespective of the presence of PP1 (2mM), into both types of myosin studied. 2. The size of the initial burst of P1 liberation for both myosins was found to be 0.5--0.6 mol/mol head. 3. The rapid incorporation of TNBS into cardiac muscle myosin was accompanied by a rapid decrease in the size of the initial P1 burst, and it was completely lost after modification for 20 min. However, smooth muscle myosin retained its P1 burst. 4. The EDTA (K+)-ATPase activity of both myosins modified in the presence or absence of PP1 decreased sharply with incorporation of TNBS. 5. Superprecipitation and ATPase activity of reconstituted actomyosin from cardiac myosin and skeletal F-actin decreased only after 10 min of modification with TNBS in the absence of PP1. 6. The spectra of TNP bound to myosins from cardiac and smooth muscles were unchanged by the addition of PP1. The above findings are compared with those previously obtained for skeletal muscle myosin [Miyanishi, T., Inoue, A., & Tonomura, Y. (1979) J. Biochem. 85, 747--753], and the structural and functional differences among the myosins derived from skeletal, cardiac, and smooth muscles are discussed.  相似文献   

19.
alpha-Actinin purified from chicken gizzard smooth muscle was characterized in comparison with alpha-actinins from chicken striated muscles, or fast-skeletal muscle, slow-skeletal muscle, and cardiac muscle. The gizzard alpha-actinin molecule consisted of two apparently identical subunits with a molecular weight of 100,000 on SDS-polyacrylamide gel electrophoresis, as do striated-muscle alpha-actinins. Its isoelectric points in the presence of urea were similar to the striated-muscle counterparts. Despite these similarities, distinctive amino acid sequences between smooth-muscle alpha-actinin and striated-muscle alpha-actinins were revealed by peptide mapping using limited proteolysis in SDS. Gizzard alpha-actinin was immunologically distinguished from striated-muscle alpha-actinins. Gizzard alpha-actinin formed bundles of gizzard F-actin as well as of skeletal-muscle F-actin, but could not form any cross-bridges between adjacent actin filaments under conditions where skeletal-muscle alpha-actinin could. Temperature-dependent competition between gizzard alpha-actinin and tropomyosin on binding to gizzard thin filaments was demonstrated by electron microscopic observations. Gizzard alpha-actinin promoted Mg2+-ATPase activity of reconstituted skeletal actomyosin, gizzard acto-skeletal myosin, and gizzard actomyosin. This promoting effect was depressed by the addition of gizzard tropomyosin. These findings imply that, despite structural differences between gizzard and striated-muscle alpha-actinin molecules, they function similarly in vitro, and that gizzard alpha-actinin can interact not only with smooth-muscle actin (gamma- and beta-actin) but also with skeletal-muscle actin (alpha-actin).  相似文献   

20.
Partially purified smooth muscle (chicken gizzard) actomyosin contains two major substrates of cAMP-dependent protein kinase: a protein of Mr = 130,000, identified as the calmodulin-dependent myosin light chain kinase, and a protein of Mr = 42,000. This latter protein was shown by a variety of electrophoretic procedures to be actin. Purified smooth muscle actin also was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. The rate of phosphorylation of smooth muscle actin was significantly enhanced by depolyjerization of actin. A maximum of 2.0 mol phosphate could be incorporated per mol G-actin. Skeletal muscle F-actin was not significantly phosphorylated by protein kinase; however, skeletal G-actin is a substrate for the protein kinase although its rate of phosphorylation was significantly slower than that of smooth muscle G-actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号