首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximately 7% of old, unthrifty sheep (Ovis aries) in New Zealand have intestinal adenocarcinomas. To investigate whether these sheep might be used as a model of human colonic neoplasia, the biologic behavior and histologic appearance of ovine intestinal adenocarcinomas were compared with those reported for human colonic adenocarcinomas. We collected 50 intestinal tracts with grossly visible intestinal neoplasia from slaughtered sheep. Neoplasms were assessed using World Health Organization guidelines for assessment of human colonic adenocarcinomas. All ovine adenocarcinomas developed in the small intestine. In contrast, only 4% of human intestinal tumors develop at this location, whereas the majority develop in the colon. A visible polyp is present within 89% of human colonic adenocarcinomas, whereas polyps were present in only 46% of the ovine neoplasms. Intestinal wall infiltration by the neoplastic cells and rates of lymph node (84% in sheep; 61% in humans) and distant (52% in sheep; 17% in humans) metastases were comparable between ovine and human adenocarcinomas. However, ovine adenocarcinomas developed more peritoneal and fewer hepatic metastases than human adenocarcinomas. Histologic grading of ovine tumors revealed cell differentiation similar to that reported within human colonic adenocarcinomas. In conclusion, ovine intestinal adenocarcinomas, like human colonic adenocarcinomas, typically arise spontaneously and consistently develop widespread metastases. In addition, tumors appear histologically similar between these species. Therefore, sheep may provide a model of advanced human colonic cancer, possibly allowing evaluation of novel therapeutics and surgical procedures.  相似文献   

2.
Androgenic hormones have previously been shown to promote cell proliferation in the small intestine of rat and androgen receptors have been demonstrated in carcinomata of the large intestine of rat. In this study the influence of testosterone and of castration on epithelial cell proliferation in the small intestine, the large intestine and in dimethylhydrazine-induced colonic tumours is compared. Cell proliferation in the small intestine and in colonic tumours was accelerated by testosterone treatment, and cell proliferation in colonic tumours, but not in the small intestine, was retarded following castration. Cell proliferation in colonic tumours was also inhibited by the anti-androgenic drug, Flutamide. Testosterone and castration each failed to influence cell proliferation in the colonic crypt epithelium of both normal and carcinogen-treated animals.  相似文献   

3.
Arachidonic acid is a precursor for biosynthesis of eicosanoids, including prostaglandins, thromboxanes, leukotrienes, and lipoxins. Cytosolic phospholipase A(2) (cPLA(2)) plays a key role in the release of arachidonic acid as the substrate of cyclooxygenase-1 (COX-1) or COX-2. We found that the level of cPLA(2) mRNA was markedly elevated in the polyps and correlated with the polyp size in the small intestine of the Apc(delta)(716) knockout mouse, a model for human familial adenomatous polyposis. To determine the role of cPLA(2) in intestinal tumorigenesis, we then introduced a cPLA(2) gene mutation into Apc(delta)(716) mice. In the compound mutant mice, the size of the small intestinal polyps was reduced significantly, although the numbers remained unchanged. These results provide direct genetic evidence that cPLA(2) plays a key role in the expansion of polyps in the small intestine rather than in the initiation process. In contrast, colonic polyps were not affected in either size or number. Interestingly, group X sPLA(2) was constitutively expressed in the colon at much higher levels than in the small intestine. These results suggest that in the colon, group X sPLA(2) supplies arachidonic acid in both the normal epithelium and the polyps even in the absence of cPLA(2).  相似文献   

4.
Congenital chloride diarrhea (CLD) is an autosomal recessive disorder of intestinal electrolyte transportation caused by mutations in the anion transporter protein encoded by the down-regulated in adenoma (DRA), or CLD, gene. In this study, in situ hybridization and immunohistochemistry were performed to investigate the expression of CLD in extraintestinal normal epithelia and in intestinal inflammatory and neoplastic epithelia. The expression of the closely related anion transporter diastrophic dysplasia sulfate transporter, DTDST, was also examined and compared with that of CLD in colon. The only extraintestinal tissues showing CLD expression were eccrine sweat glands and seminal vesicles. In inflammatory bowel disease and ischemic colitis, expression of CLD mRNA in colon epithelium was similar to histologically normal colon epithelium, but the protein was found deeper in crypts, including proliferative epithelial cells. In intestinal tumors, the expression pattern of CLD was dependent on the differentiation status of the tissue studied: epithelial polyps with no or minor dysplasia showed abundant expression, whereas adenocarcinomas were negative. The DTDST gene was abundantly expressed in the upper crypt epithelium of colonic mucosa.  相似文献   

5.
Proliferation, differentiation, and cell death were studied in small intestinal and colonic epithelia of rats after treatment with methotrexate. Days 1-2 after treatment were characterized by decreased proliferation, increased apoptosis, and decreased numbers and depths of small intestinal crypts in a proximal-to-distal decreasing gradient along the small intestine. The remaining crypt epithelium appeared flattened, except for Paneth cells, in which lysozyme protein and mRNA expression was increased. Regeneration through increased proliferation during days 3-4 coincided with villus atrophy, showing decreased numbers of villus enterocytes and decreased expression of the enterocyte-specific genes sucrase-isomaltase and carbamoyl phosphate synthase I. Remarkably, goblet cells were spared at villus tips and remained functional, displaying Muc2 and trefoil factor 3 expression. On days 8-10, all parameters had returned to normal in the whole small intestine. No methotrexate-induced changes were seen in epithelial morphology, proliferation, apoptosis, Muc2, and TFF3 immunostaining in the colon. The observed small intestinal sparing of Paneth cells and goblet cells following exposure to methotrexate is likely to contribute to epithelial defense during increased vulnerability of the intestinal epithelium.  相似文献   

6.
Shigella flexneri is a Gram-negative pathogen that invades the colonic epithelium. While invasion has been thoroughly investigated, it is unknown how Shigella first attaches to the epithelium. Previous literature suggests that Shigella utilizes adhesins that are induced by environmental signals, including bile salts, encountered in the small intestine prior to invasion. We hypothesized that bile would induce adherence factors to facilitate attachment to colonic epithelial cells. To test our hypothesis, S. flexneri strain 2457T was subcultured in media containing bile salts, and the ability of the bacteria to adhere to the apical surface of polarized T84 epithelial cells was measured. We observed a significant increase in adherence, which was absent in a virulence plasmid-cured strain and a type-III secretion system mutant. Microarray expression analysis indicated that the ospE1/ospE2 genes were induced in the presence of bile, and bile-induced adherence was lost in a ΔospE1/ΔospE2 mutant. Further studies demonstrated that the OspE1/OspE2 proteins were localized to the bacterial outer membrane following exposure to bile salts. The data presented are the first demonstration that the OspE1/OspE2 proteins promote initial adherence to the intestinal epithelium. The adhesins required for Shigella attachment to the colonic epithelium may serve as ideal targets for vaccine development.  相似文献   

7.
A post-embedding ultrastructural immunogold method was used to detect osteopontin in human intestinal biopsies with special emphasis on secretory and phagocytic organelles. Osteopontin immunoreactivity was localized to phagolysosomes of macrophages, fibroblasts, absorptive epithelial cells of the small intestine and Paneth cells. The mucigen secretory granules and Golgi structures of mucous epithelial cells of the small intestinal epithelium contained osteopontin, but secretory granules of numerous other cells, including Paneth cells, did not. Extracellular and phagocytosed Tropheryma whippelii within macrophage phagolysosomes also bound osteopontin. These localizations are supportive of a role for osteopontin in phagocytic and some secretory cell functions in human intestine  相似文献   

8.
Gui X  Guzman G  Dobner PR  Kadkol SS 《Peptides》2008,29(9):1609-1615
The high affinity neurotensin receptor (NTSR1) mediates most of the biologic effects of neurotensin (NT), a 13-amino acid peptide that stimulates growth in certain cell types. NT is expressed in fetal but not differentiated colonic epithelium and is re-expressed in colonic adenocarcinoma. The cognate receptor, NTSR1, is also not expressed or is present at a low level in adult colonic epithelial cells but is expressed in most colon cancer cell lines. These observations suggest that altered NT-NTSR1 signaling may be associated with malignant transformation in the colon. To further understand the possible role of NTSR1 expression in colonic tumorigenesis and progression, we examined NTSR1 mRNA by in situ hybridization in normal colonic mucosa, adenomas, and colonic adenocarcinomas. NTSR1 mRNA expression was undetectable or weak in superficial differentiated epithelial cells of normal colonic epithelium, but adenomas and adenocarcinomas showed moderate to strong expression (p<0.05). Adenocarcinomas showed a higher level of expression compared to adenomas (p<0.05). Furthermore, adenocarcinomas that infiltrated into and beyond the muscularis propria showed a higher intensity of NTSR1 expression compared with tumors that were localized to the mucosa or submucosa. In some cases, infiltrating margins and foci of lymphovascular invasion showed a higher intensity of expression than the main mass of the tumor. These results suggest that increased NTSR1 expression may be an early event during colonic tumorigenesis and also contribute to tumor progression and aggressive behavior in colonic adenocarcinomas. NTSR1 may thus be a potential target for preventive or therapeutic strategies in colon cancer.  相似文献   

9.
Utility of HBME-1 immunostaining in serous effusions   总被引:5,自引:0,他引:5  
Utility of HBME-1 immunostaining in serous effusions
HBME-1 is an anti-mesothelial cell monoclonal antibody derived from human mesothelioma cells. We investigated 227 body cavity effusions to test its utility in differentiating mesothelioma from adenocarcinoma. HBME-1 outlined cell membranes in non-neoplastic mesothelial cells. Thick surface staining was observed on all mesotheliomas. HBME-1 reactivity was also detected in 24% of metastatic carcinomatous effusions. Most ovarian carcinomas (83%) reacted with this antibody, showing surface staining. Cytoplasmic HBME-1 immunoreactivity was observed in a small proportion of non-ovarian adenocarcinomas (14%). Despite its limited specificity, HBME-1 might be added to the battery of other markers of epithelial and/or mesothelial differentiation to be used in cases of suspected mesothelioma. Evaluation of suspicious cells should include careful study of the pattern of immunostaining.  相似文献   

10.
Insulin-like growth factor I (IGF-I) potently stimulates intestinal growth. Insulin receptor substrate-1 (IRS-1) mediates proliferative and antiapoptotic actions of IGF-I in cell lines, but its in vivo relevance in intestine is not defined. This study tested the hypothesis that there is cell type-specific dependence on IRS-1 as a mediator of IGF-I action. Length, mass, crypt cell proliferation, and apoptosis were measured in small intestine and colon of IRS-1-null mice and wild-type (WT) littermates and in colon of IRS-1-null or WT mice expressing IGF-I transgenes. Expression of IGF-I receptor and signaling intermediates was examined in intestine of WT and IRS-1-null mice, cultured intestinal epithelial cells, and myofibroblasts. Absolute IRS-1 deficiency reduced mucosal mass in jejunum and colon, but effects were more pronounced in colon. Muscularis mass was decreased in both segments. In IGF-I transgenics, IRS-1 deficiency significantly attenuated IGF-I-stimulated growth of colonic mucosa and abolished antiapoptotic but not mitogenic effects of IGF-I transgene on crypt cells. IGF-I-induced muscularis growth was unaffected by IRS-1 deficiency. In intestinal epithelial cells, IRS-1 was expressed at higher levels than IRS-2 and was preferentially activated by IGF-I. In contrast, IGF-I activated both IRS-1 and IRS-2 in intestinal myofibroblasts and IRS-2 activation was upregulated in IRS-1-null myofibroblasts. We conclude that the intestinal epithelium but not the muscularis requires IRS-1 for normal trophic actions of IGF-I and that IRS-1 is required for antiapoptotic but not mitogenic effects of IGF-I in the intestinal crypts in vivo.  相似文献   

11.
The presence of peroxisomes in mammalian intestine has been revealed formerly by catalase staining combined with electron microscopy. Despite the central role of intestine in lipid uptake and the established importance of peroxisomes in different lipid‐related pathways, few data are available on the physiological role of peroxisomes in intestinal metabolism, more specifically, α‐, β‐oxidation, and etherlipid synthesis. Hence, the peroxisomal compartment was analyzed in more detail in mouse intestine. On the basis of immunohistochemistry, the organelles are mainly confined to the epithelial cells. The expression of the classical peroxisome marker catalase was highest in the proximal part of jejunum and decreased along the tract. PEX14 showed a similar profile, but was still substantial expressed in large intestinal epithelium. Immunoblotting of epithelial cells, isolated from the different segments, showed also such gradient for some enzymes, ie, catalase, ACOX1, and D‐specific multifunctional protein 2, and for the ABCD1 transporter, being high in small and low or absent in large intestine. Other peroxisomal enzymes (PHYH, HACL1, and ACAA1), the ABCD2 and ABCD3 transporters, and peroxins PEX13 and PEX14, however, did not follow this pattern, displaying rather constant signals throughout the intestinal epithelium. The small intestine displayed the highest peroxisomal β‐oxidation activity and is particularly active on dicarboxylic acids. Etherlipid synthesis was high in the large intestine, and colonic cells had the highest content of plasmalogens. Overall, these data suggest that peroxisomes exert different functions according to the intestinal segment.  相似文献   

12.
A post-embedding ultrastructural immunogold method was used to detect osteopontin in human intestinal biopsies with special emphasis on secretory and phagocytic organelles. Osteopontin immunoreactivity was localized to phagolysosomes of macrophages, fibroblasts, absorptive epithelial cells of the small intestine and Paneth cells. The mucigen secretory granules and Golgi structures of mucous epithelial cells of the small intestinal epithelium contained osteopontin, but secretory granules of numerous other cells, including Paneth cells, did not. Extracellular and phagocytosed Tropheryma whippelii within macrophage phagolysosomes also bound osteopontin. These localizations are supportive of a role for osteopontin in phagocytic and some secretory cell functions in human intestine This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
Cannabis has been used for centuries in the medicinal treatment of gastrointestinal disorders. Endogenous cannabinimimetic substances such as 2-arachidonylglycerol have been isolated from gut homogenates and CB1-cannabinoid binding sites have been identified in small intestine. In this study, CB1-cannabinoid receptors (CB1-R) were immunohistochemically localized within the enteric nervous system of the pig, an omnivorous species whose digestive tract is functionally similar to humans. Two anti-CB1-R antisera, raised against N-terminal epitopes in the human CB1-R, were employed to localize receptor immunoreactivity by secondary immunofluorescence. CB1-R immunoreactivity was observed in the myenteric and submucosal ganglionated plexuses of porcine ileum and colon. In the ileum, all CB1-R-immunoreactive neurons coexpressed immunoreactivity to the cholinergic marker, choline acetyltransferase (ChAT). CB1-R/ChAT-immunoreactive neurons appeared to be in close apposition to ileal Peyer's patches, submucosal blood vessels, and intestinal crypts. In the distal colon, CB1-R-immunoreactive neurons also expressed immunoreactivity to ChAT, albeit less frequently than in ileum. Immunoreactivity to vasoactive intestinal peptide or nitric oxide synthase was not colocalized in ileal or colonic CB1-R-immunoreactive neurons. These studies indicate that CB1-R are present in cholinergic neurons in the porcine enteric nervous system. The potential roles of these receptors in intestinal motility and epithelial transport, host defense and visceral pain transmission are discussed.  相似文献   

14.
Vasoactive intestinal peptide (VIP) receptors and VIP-dependent cyclic AMP production were studied in rat colonic epithelial cells 3 days after a 60% resection of the small intestine. Basal cyclic AMP levels were similar in both control and resected animals. The potency, but not the efficiency, of the peptide on the stimulation of cyclic AMP production was diminished in cells from resected rats. Accordingly, the affinity of VIP receptors, but not the binding capacity, decreased as a consequence of the loss of a part of the small intestinal mucosa. These observations are consistent with the known inhibitory role of cyclic AMP on cell proliferation in colonic epithelium and other tissues and suggest a participation of VIP acting through the cyclic nucleotide in the compensatory hyperproliferative response of the colon following massive resection of the small intestine.  相似文献   

15.
16.
Frequency of gram-negative bacteria is markedly enhanced in inflamed gut, leading to augmented LPS in the intestine. Although LPS in the intestine is considered harmless and, rather, provides protective effects against epithelial injury, it has been suggested that LPS causes intestinal inflammation, such as necrotizing enterocolitis. Therefore, direct effects of LPS in the intestine remain to be studied. In this study, we examine the effect of LPS in the colon of mice instilled with LPS by rectal enema. We found that augmented LPS on the luminal side of the colon elicited inflammation in the small intestine remotely, not in the colon; this inflammation was characterized by body weight loss, increased fluid secretion, enhanced inflammatory cytokine production, and epithelial damage. In contrast to the inflamed small intestine induced by colonic LPS, the colonic epithelium did not exhibit histological tissue damage or inflammatory lesions, although intracolonic LPS treatment elicited inflammatory cytokine gene expression in the colon tissues. Moreover, we found that intracolonic LPS treatment substantially decreased the frequency of immune-suppressive regulatory T cells (CD4(+)/CD25(+) and CD4(+)/Foxp3(+)). We were intrigued to find that LPS-promoted intestinal inflammation is exacerbated in immune modulator-impaired IL-10(-/-) and Rag-1(-/-) mice. In conclusion, our results provide evidence that elevated LPS in the colon is able to cause intestinal inflammation and, therefore, suggest a physiological explanation for the importance of maintaining the balance between gram-negative and gram-positive bacteria in the intestine to maintain homeostasis in the gut.  相似文献   

17.
The intestinal epithelium forms a physical barrier to limit access of enteric microbes to the host and contributes to innate host defense by producing effector molecules against luminal microbes. To further define the role of the intestinal epithelium in antimicrobial host defense, we analyzed the expression, regulation, and production of two antimicrobial peptides, human defensins hBD-1 and hBD-2, by human intestinal epithelial cells in vitro and in vivo. The human colon epithelial cell lines HT-29 and Caco-2 constitutively express hBD-1 mRNA and protein but not hBD-2. However, hBD-2 expression is rapidly induced by IL-1alpha stimulation or infection of those cells with enteroinvasive bacteria. Moreover, hBD-2 functions as a NF-kappaB target gene in the intestinal epithelium as blocking NF-kappaB activation inhibits the up-regulated expression of hBD-2 in response to IL-1alpha stimulation or bacterial infection. Caco-2 cells produce two hBD-1 isoforms and a hBD-2 peptide larger in size than previously described hBD-2 isoforms. Paralleling the in vitro findings, human fetal intestinal xenografts constitutively express hBD-1, but not hBD-2, and hBD-2 expression, but not hBD-1, is up-regulated in xenografts infected intraluminally with Salmonella. hBD-1 is expressed by the epithelium of normal human colon and small intestine, with a similar pattern of expression in inflamed colon. In contrast, there is little hBD-2 expression by the epithelium of normal colon, but abundant hBD-2 expression by the epithelium of inflamed colon. hBD-1 and hBD-2 may be integral components of epithelial innate immunity in the intestine, with each occupying a distinct functional niche in intestinal mucosal defense.  相似文献   

18.
Ren HJ  Cui J  Wang ZQ  Liu RD 《PloS one》2011,6(10):e27010
It has been known for many years that Trichinella spiralis initiates infection by penetrating the columnar epithelium of the small intestine; however, the mechanisms used by the parasite in the establishment of its intramulticellular niche in the intestine are unknown. Although the previous observations indicated that invasion also occurs in vitro when the infective larvae are inoculated onto cultures of intestinal epithelial cells (e.g., human colonic carcinoma cell line Caco-2, HCT-8), a normal readily manipulated in vitro model has not been established because of difficulties in the culture of primary intestinal epithelial cells (IECs). In this study, we described a normal intestinal epithelial model in which T. spiralis infective larvae were shown to invade the monolayers of normal mouse IECs in vitro. The IECs derived from intestinal crypts of fetal mouse small intestine had the ability to proliferate continuously and express specific cytokeratins as well as intestinal functional cell markers. Furthermore, they were susceptible to invasion by T. spiralis. When inoculated onto the IEC monolayer, infective larvae penetrated cells and migrated through them, leaving trails of damaged cells heavily loaded with T. spiralis larval excretory-secretory (ES) antigens which were recognized by rabbit immune sera on immunofluorescence test. The normal intestinal epithelial model of invasion mimicking the natural environment in vivo will help us to further investigate the process as well as the mechanisms by which T. spiralis establishes its intestinal niche.  相似文献   

19.
The processes of cell proliferation, lineage allocation and differentiation occur continuously and rapidly along the crypt-to-villus axis of the small intestine and the crypt-to-surface epithelial cuff axis of the colon. The four principal epithelial cell lineages in the gut are derived from a multipotent stem cell. Current evidence suggests that each small intestinal and colonic crypt contains a single active stem cell. The biological properties of these stem cells can be inferred from the properties of their amplified, spatially constrained, descendants. Recent studies in transgenic mice have provided insights about how axial pattern formation is maintained in this perpetually renewing epithelium.  相似文献   

20.
Summary We have studied some aspects of the morphological and biochemical differentiation of the foetal guinea-pig colonic epithelium. At day 40 the epithelium was organised in ridges and appeared pseudo-stratified. Folding of the epithelium, followed by villus formation, occurred between days 45 and 55, and by day 50 mucus-secreting goblet cells appeared at the bases of the colonic villi. By day 55 most epithelial cells, including goblet cells, possessed numerous microvilli which, by day 65, had become organised into well developed brush-borders. Between day 55 and term (day 65–68) mucosal depth increased markedly and the colon attained its final glandular morphology.Biochemical studies showed the specific activities of the microvillar hydrolases to be much lower in the washed colon than in either foetal meconium or small intestine at all times during development. Furthermore, a membrane fraction highly enriched in microvillus hydrolase activities was prepared from foetal colonic meconium using techniques originally devised to isolate the foetal small intestinal microvillus membrane. This meconial subfraction was almost identical in polypeptide composition to the highly-purified foetal small intestinal microvillus membrane. Identification of the colonic microvillus membrane was hampered by the absence of reliable membrane markers. Nevertheless, a fraction 14-fold enriched in aminopeptidase activity was prepared from day 40 foetal colon and its polypeptide composition compared by SDS-PAGE to that of the small intestinal microvillus membrane at the same age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号