首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luxol fast blue MBS (du Pont), which has frequently been used as a stain for phospholipids, stains Mallory's “alcoholic” hyaline a deep purplish blue. The stain is stable and provides histological appearances far superior to other methods. It is used on paraffin sections of tissue fixed in formalin or formalin-sublimate as a 0.1% solution in 90% alcohol at 60°C for 8 hr. Differentiation is made with 0.05% Li2CO3 and a red counterstain applied.  相似文献   

2.
The tissue is fixed in 10% neutral saline formalin for 1 day to 3 wk depending on the size of the block, dehydrated and embedded in paraffin. The sections are stained at 57° C for 2 hr, then at 22° C for 30 min, in a 0.0125% solution of Luxol fast blue in 95% alcohol acidified by 0.1% acetic acid. They are differentiated in a solution consisting of: Li2CO3, 5.0 gm; LiOH-H2O, 0.01 gm; and distilled water, 1 liter at 0-1° C, followed by 70% alcohol, and then treated with 0.2% NaHSO3. They are soaked 1 min in an acetic acid-sodium acetate buffer 0.1 N, pH 5.6, then stained with 0.03% buffered aqueous neutral red. Sections are washed in distilled water, 1 sec, then treated with the following solution: CuSO4·5H2O, 0.5 gm; CrK(SO4)2·12H2O, 0.5 gm; 10% acetic acid, 3 ml; and distilled water, 250 ml. Dehydration, clearing and covering complete the process. Myelin sheaths are stained bright blue; meninges and the adventitia of blood vessels are blue; red blood cells are green. Nissl material is stained brilliant red; axon hillocks, axis cylinders, ependyma, nuclei and some cytoplasm of neuroglia, media and endothelium of blood vessels are pink.  相似文献   

3.
Axoplasm is selectively impregnated by the following steps: (1) fixation in 10% formalin or in 10% formalin with added sucrose, 15%, and concentrated NH4OH, 1%, for 1-7 days; (2) frozen sections; (3) extraction of the sections in 95% ethyl alcohol, absolute alcohol, xylene, and 95% ethyl alcohol and absolute alcohol, 1 hr each; (4) distilled water, 3 changes of 10 min each; (5) 20% AgNO3 (aq.) at 25°C, 30 min; (6) distilled water, 3 changes of 1-2 sec each; (7) 6.9% K2CO3, 1 hr; (8) water, 3 changes of about 1 min each; (9) 0.2%AuCl3, 2 min; (10) distilled water; (11) 5% Na2S2O3, 2 min; (12) washing, clearing and mounting. This procedure is proposed as a simplified stain for axoplasm, with other tissue components remaining unstained. The few reagents necessary suit this method for histochemical investigation of the mechanism of silver staining.  相似文献   

4.
A method for impregnating oligodendroglia in nervous tissue (monkey) fixed and preserved in formalin for many years is described. This tissue is reconditioned by placing 12 to 30μ frozen sections of it in concentrated ammonia (sp. gr. 0.90) and by washing them slowly for 24 hours with a 1 mm. stream of water. The fluid is then poured off the sections; the jar is refilled with concentrated ammonia; and washing is repeated for another 24 hours. The sections are then plunged into concentrated ammonia for 7 minutes.

After treatment in ammonia, the sections are incubated for one hour at 38oC. in Globus' 5% hydrobromic acid solution. They are washed again, in distilled water, and then impregnated in a “medium” strength ammoniacal silver carbonate solution (5 ml. of 10% AgNO3 added to 15 ml. of 5% Na2CO3. The precipitate is dissolved in concentrated ammonia and diluted to SO ml. with distilled water). Impregnation is followed by reduction in 1% formalin without agitation; fixation in 5% Na2S2O3; dehydration, and mounting in clarite.

Typical oligodendroglia (Fig. 1) were made visible by use of the method outlined in this paper.  相似文献   

5.
Luxol fast blue ARN (Du Pont, C.I. solvent blue 37) is a diarylguanidine salt of a sulfonated azo dye. This dye was compared with other Luxol blue and Luxol black dyes. Luxol fast blue ARN has improved staining qualities for phospholipids and myelin, and can advantageously be substituted for Luxol fast blue MBS (MBSN). Appropriate staining times for a 0.1% dye solution in 95% ethanol (containing 0.02% acetic add) at 35°-40° C range from 2-3 hr. After staining, the sections should be rinsed in 95% ethanol, rinsed in distilled water, and differentiated for 2 sec in 0.005% Li2CO3, rinsed in 70% ethanol, washed in water, and counterstained as required. Phospholipids and myelin selectively stain deep blue. A fixative containing CaCl2, 1%; cetyltrimethylammonium bromide, 0.5%; and formaldehyde, 10%, in water gave excellent results with brain. However, 10% formalin can be used. The staining of the phospholipids is probably due to the formation of dye-phospholipid complexes.  相似文献   

6.
This is a staining technique for histopathologic evaluation of tissue reaction in the environs of acid-fast tubercle bacilli (avian and bovine) in sections. Fresh tissue is fixed in 10% neutral formalin and processed in the usual manner for embedding in paraffin. Sections are cut approximately 6 μ. thick, dewaxed, hydrated, and stained with Harris' hematoxylin. They are rinsed in tap water, differentiated in add alcohol, washed in tap water, given a distilled water rinse and stained at 20-30° C in a 1% solution of new fuchsin in 5% phenol. Each slide is then handled individually by placing it directly into a saturated aqueous solution of Li2CO3 and agitated gently for a few seconds. This is followed by differentiation with 5% glacial acetic acid in absolute or 95% ethyl alcohol until the color stops running. Two rinses in absolute or 95% ethyl alcohol follow. The sections are then counterstained in the color add of eosin Y prepared according to the method of Schleicher (Stain Techn., 28, 119-23, 1953) and used as an 0.025% solution in absolute alcohol. Following passage through 2 changes of absolute alcohol, the sections are cleared in xylene, then mounted in Permount or similar synthetic resin. The add-fast barilli are emphasized by their bright retractile red color within a contrasting background of hematoxylin and eosin.  相似文献   

7.
Extensive experimentation with protargol staining of neurons in celloidin and frozen sections of organs has resulted in the following technic: Fix tissue in 10% aqueous formalin. Cut celloidin sections IS to 25 μ, frozen sections 25 to 40 μ. Place sections for 24 hours in 50% alcohol to which 1% by volume of NH4OH has been added. Transfer the sections directly into a 1% aqueous solution of protargol, containing 0.2 to 0.3 g. of electrolytic copper foil which has been coated with a 0.5% solution of celloidin, and allow to stand for 6 to 8 hours at 37° C. Caution: In this and the succeeding step the sections must not be allowed to come in contact with the copper. From aqueous protargol, place the sections for 24 to 48 hours at 37° C. directly into a pyridinated solution of alcoholic protargol (1.0% aqueous solution protargol, 50 ml.; 95% alcohol, 50 ml.; pyridine, 0.5 to 2.0 ml.), containing 0.2 to 0.3 g. of coated copper. Rinse briefly in 50% alcohol and reduce 10 min. in an alkaline hydroquinone reducer (H3BO3, 1.4 g.; Na2SO3, anhydrous, 2.0 g.; hydroquinone, 0.3 g.; distilled water, 85 cc; acetone, 15 ml.). Wash thoroly in water and tone for 10 min. in 0.2% aqueous gold chloride, acidified with acetic acid. Wash in distilled water and reduce for 1 to 3 min. in 2% aqueous oxalic acid. Quickly rinse in distilled water and treat the sections 3 to 5 min. with 5% aqueous Na2S2O3+5H2O. Wash in water and stain overnight in Einarson's gallocyanin. Wash thoroly in water and place in 5% aqueous phosphotungstic acid for 30 min. From phosphotungstic acid transfer directly to a dilution (stock solution, 20 ml.; distilled water, 30 ml.) of the following stock staining solution: anilin blue, 0.01 g.; fast green FCF, 0.5 g.; orange G, 2.0 g.; distilled water, 92.0 ml.; glacial acetic acid, 8 ml.) and stain for 1 hour. Differentiate with 70% and 95% alcohol; pass the sections thru butyl alcohol and cedar oil; mount.  相似文献   

8.
A rather concentrated alcoholic staining solution, an aqueous formalin-containing diluent, and a mixture of ethyl ether and absolute methyl alcohol are required. Formulas: A. Wright's stain (Harleco, Cert. No. LWr-52 was used), 3.3 gm; methyl alcohol, 500 ml. B. Formaldehyde solution 40% USP (Fisher's used), 0.25 ml; distilled water, 500 ml with its pH adjusted to 6.8 by addition of either 0.25% Na2CO2 or 0.25% HCl, as needed. C. A I:I mixture of ethyl ether and absolute methyl alcohol. Procedure: Prepare thin smears of normal or pathological avian blood, air dry, place the slides on a drying rack, cover with solution A, and let stand for about 8 min. Dilute the stain by dropping on a volume of B estimated to be equal to the volume of the partially evaporated stain, and let stand for 2-5 min, or until the surface is well covered by a metallic sheen. Wash with distilled water adjusted to pH 6.8 with the 0.25% Na2CO2 solution or 0.25% HCl. Dry the preparations quickly by blotting with filter paper. Differentiate and adjust the color intensities by dipping 6-10 times into C. Check the results microscopically and differentiate further if the colors are not properly balanced. Dry, uncovered preparations may be examined under oil; or, a cover glass can be applied with balsam or a synthetic resin for permanent mount. Results are similar to those described in textbooks, but have been more consistent than those obtained with other techniques for blood cells of chicken, pheasants, American and Indian partridge, quail, pigeon, turkey, goose, canary, and the Himalayan snow partridge.  相似文献   

9.
Rat suprarenal glands fixed in Palade's 1% OsO4, buffered at pH 7.7 with veronal-acetate, to which 0.1% MgCl2 was added, were embedded in Vestopal-W and sectioned at 0.2-1 µ. The sections were attached to slides by floating on water, without adhesive, and drying at 60-80° C, placed in acetone for 1 min and then treated with the following staining procedure: Place the preparation in a filtered solution of oil red O, 1 gm; 70% alcohol, 50 ml; and acetone, C.P., 50 ml; for 0.5-1 hr. Rinse in absolute ethyl alcohol; drain; counterstain with 0.5% aqueous thionin for 5 min; rinse in distilled water; drain; stain in 0.2% azure B in phosphate buffer at pH 9, for 5 min. Dry and apply a drop of immersion oil directly on the section. The preparations are temporary. Ciaccio-positive lipids, rendered insoluble by OsO, fixation, stained red to ochre.  相似文献   

10.
Tissues were fixed for 30 min In cold (0-2° C) 1% OsO4 (Palade) buffered at pH 7.7, to which 0.1% MgCl2 was added. Dehydration was in a graded ethanol series (containing 0.5% MgCl2) at 0-2° C, and terminated with 2 changes of absolute ethanol. Tissues were then transferred by a graded series to anhydrous acetone. Infiltration of the tissue with Vestopal-W (a polyester resin), is gradual with the aid of graded solutions of Vestopal-W in acetone. The infiltrated tissue is encapsulated and initial polymerization is done under ultraviolet light at room temperature for 8-16 hr. This is followed by final hardening at 60° C for 36-48 hr. Sections (0.2-1 μ) were cut, dried on slides, placed in acetone for 1 min and then treated by either of the following staining procedures: (1) Thionin-azure-fuchsin staining: Flood the preparation with 0.2% aqueous thionin and heat to 60-80° C for 3 min; if the preparation begins to dry, add stain. Rinse in distilled water. Flood the slide with 0.2% azure B in phosphate buffer at pH 9. Heat to 60-80° C for 3 min; do not permit the preparation to dry. Rinse in distilled water. Dip the slide in MacCallum's variant of Goodpasture's carbol-fuchsin stain for 1-2 sec. Rinse in distilled water. Check the preparation microscopically for intensity of the fuchsin stain. Repeat dips as may be needed to obtain the desired intensity. Rinse in distilled water. Dehydrate quickly in 95% and absolute alcohol; clear in 2 changes of xylene and cover in Permount or similar synthetic resin. (2) Thionin-azure counterstain for the periodic acid-Schiff reaction: Oxidize the tissue in 0.5% periodic acid for 15 min and transfer to Schiff's leucofuchsin solution for 30 min. Counterstain with 0.5% aqueous thionin for 3 min; wash in distilled water; stain in 0.2% azure B in phosphate buffer at pH 5.5; wash in distilled water; dehydrate; clear and cover as in the first method. For temporary preparations let dry after absolute alcohol and apply a drop of immersion oil directly on the section.  相似文献   

11.
Tissues were fixed at 20° C for 1 hr in 1% OsO4, buffered at pH 7.4 with veronal-acetate (Palade's fixative), soaked 5 min in the same buffer without OsO4, then dehydrated in buffer-acetone mixtures of 30, 50, 75 and 90% acetone content, and finally in anhydrous acetone. Infiltration was accomplished through Vestopal-W-acetone mixtures of 1:3, 1:1, 3:1 to undiluted Vestopal. After polymerisation at 60° C for 24 hr, 1-2 μ sections were cut, dried on slides without adhesive, and stained by any of the following methods. (1) Mayer's acid hemalum: Flood the slides with the staining solution and allow to stand at 20°C for 2-3 hr while the water of the solution evaporates; wash in distilled water, 2 min; differentiate in 1% HCl; rinse 1-2 sec in 10% NH,OH. (2) Iron-trioxyhematein (of Hansen): Apply the staining solution as in method 1; wash 3-5 min in 5% acetic acid; restain for 1-12 hr by flooding with a mixture consisting of staining solution, 2 parts, and 1 part of a 1:1 mixture of 2% acetic acid and 2% H2SO4 (observe under microscope for staining intensity); wash 2 min in distilled water and 1 hr in tap water. (3) Iron-hematoxylin (Heidenhain): Mordant 6 hr in 2.5% iron-alum solution; wash 1 min in distilled water; stain in 1% or 0.5% ripened hematoxylin for 3-12 br; differentiate 8 min in 2.5%, and 15 min in 1% iron-alum solution; wash 1 hr in tap water. (4) Aceto-carmine (Schneider): Stain 12-24 hr; wash 0.5-1.0 min in distilled water. (5) Picrofuchsin: Stain 24-48 hr in 1% acid fuchsin dissolved in saturated aqueous picric acid; differentiate for only 1-2 sec in 96% ethanol. (6) Modified Giemsa: Mix 640 ml of a solution of 9.08 gm KH2PO4 in 1000 ml of distilled water and 360 ml of a solution of 11.88 gm Na2HPO4-2H2O in 1000 ml of distilled water. Soak sections in this buffer, 12 hr. Dissolve 1.0 gm of azur I in 125 ml of boiling distilled water; add 0.5 gm of methylene blue; filter and add hot distilled water until a volume of 250 ml is reached (solution “AM”). Dissolve 1.5 gm of eosin, yellowish, in 250 ml of hot distilled water; filter (solution “E”). Mix 1.5 ml of “AM” in 100 ml of buffer with 3 ml of “E” in 100 ml of buffer. Stain 12-24 hr. Differentiate 3 sec in 25 ml methyl benzoate in 75 ml dioxane; 3 sec in 35 ml methyl benzoate in 65 ml acetone; 3 sec in 30 ml acetone in 70 ml methyl benzoate; and 3 sec in 5 ml acetone in 95 ml methyl benzoate. Dehydrated sections may be covered in a neutral synthetic resin (Caedax was used).  相似文献   

12.
Celloidin sections from formalin-fixed brain and spinal cord of primates are stored in 70% alcohol after cutting, soaked in 2% pyridine in 50% alcohol for 6-8 hr at 37 C, and transferred to 1% concentrated NH4OH in 50% alcohol 15-18 hr at 20-25 C. After washing and flattening, the sections are transferred to 1% silver protein solution containing 30 ml of 0.2 M H3BO3/100 ml. Impregnation is accomplished in 50 ml screw-top jars, 50 mm in diameter, which are filled to a depth of 35 mm, and have 1 gm of copper foil, 0.002 inch thick added. The foil is folded in loose accordion-fashion, pierced and threaded, cleaned in 5% HNO3, rinsed in distilled water, and suspended in the solution just above the sections by fastening the thread to the jar lid. The sections are impregnated for 24 hr at 37 C, rinsed in distilled water, reduced in a solution of 5% Na2SO3 and 1% hydroquinone for 10 min, washed in distilled water and toned in 0.2% gold chloride for 5 min. After rinsing in distilled water, the sections are transferred to 1% oxalic acid for 45-60 sec, washed in distilled water and placed in 5% Na2S2O3 for 5 min. Sections are then washed, dehydrated to 95% alcohol, cleared in terpineol, followed by 3 changes in xylene, and mounted.  相似文献   

13.
Immerse pieces of brain tissue 4 wk in solutions A and B, mixed just before use: A. K2Cr2O7, 1 gm; HgCl2, 1 gm; boiling distilled water, 85 ml. Boil A for 15 min, cool to 2 C and add: B. K2CrO4, 0.8 gm; Na2WO4, 0.5 gm; distilled water, 20 ml. Rinse in water and immerse 24 hr in LiOH, 0.5 gm; KNO3, 15 gm; distilled water, 100 ml. Wash 24 hr in several changes of 0.2% acetic acid and then for 2 hr in tap water. Dehydrate and embed in celloidin. Process a 60 μ section through 70 and 95% ethanol, a 3:1 mixture of absolute ethanol and chloroform, and toluene. Immerse it for 5 min in a solution containing methyl benzoate, 25 ml; benzyl alcohol, 100 ml; chloroform, 75 ml. Orient the section on a chemically clean slide and let air-dry 5-10 min. Process through toluene, 3:1 ethanol-chloroform and 95% ethanol. Place the section for 5-60 min at 60 C in a solution made up of: Luxol fast blue G (Matheson, Coleman and Bell), 1 gm; 95% ethanol, 1000 ml; 10% acetic acid, 5 ml. Hydrate to water and immerse in 0.05% Li2CO3 for 3-4 min. Differentiate in 70% ethanol and place in water. Immerse for 5-15 min in a mixture of two solutions: A. cresylechtviolet (Otto C. Watzka, Montreal), 2 gm; 1 M acetic acid, 185 ml; B. 1 M sodium acetate, 15 ml; distilled water, 400 ml; absolute ethanol, 200 ml. Dehydrate to 3:1 ethanol-chloroform. Clear in toluene and apply a coverslip. The technique produces fast Golgi-Cox impregnated neurons against a background of counterstained myelinated fibers. Patterns of the myelinated fibers can be used to localize impregnated neurons.  相似文献   

14.
Fresh, undecalcified bone sections can be reproducibly and reliably stained by any of the following procedures: (A) Basic fuchsin, 1% in 30% alcohol, 48 hr, 22°C. (B) AgNO3, 0.033 M, 48 hr, 22°C; washing 48 hr in a large volume of distilled water; exposure to light to develop the color. (C) Metallic sulfides (Co++, Pb++, Hg++, Cu++): the nitrate of the metal, 0.033 M, 48 hr, 22°C; then Na2S, 0.033 M, 48 hr, 22° C. (D) Alizarin Red S, 0.1% solution in distilled water, 48 hr, 22°C; differentiated 48 hr at 22°C in weakly alkaline water, pH about 8. (E) KMnO4: boiling 8-10 min in a 0.1 N, solution. With the exception of D the surface stain must be ground off the section for microscopic examination of its interior. Stain concentration, time and temperature can be altered to suit specific needs.  相似文献   

15.
Procedure: Fix 24 hr by immersion in Heidenhain's Susa (2-4 mm specimens) or by perfusion for spinal cord or brain of cats or larger mammals. Wash in 80% alcohol containing 0.5% I2, dehydrate, and embed in paraffin; or, better, double embed in celloidinparaffin. Attach sections to slides by albumen-glycerol. Remove paraffin, and celloidin if used, treat again with iodized alcohol for 30 min, followed by 0.25% Na2S2O3, and wash well with distilled water. Impregnate in darkness for 5 days at 37 C in aqueous 0.66% OsO4 to which 0.2% fresh egg albumen has been added. Check the impregnation microscopically and return the slide to the original staining solution for another 2-3 days if the granules do not show. Wash well in distilled water, dehydrate and cover as usual. The stain does not fade in water, alcohol or zylene; therefore almost any counterstain can be applied. The method stains selectively black the ciliary basal bodies and the osmiophilic granules in the majority of the different types of synaptic terminals; most red blood cells and a few nuclei also stain black.  相似文献   

16.
In this technique alpha cells are stained by basic fuchsin, beta cells by iron-hematoxylin, reticular fibers by ferric tannate, and much by alcian blue. Among 6 commonly used fixatives tested, Bouin's fluid fixation (8-12 hr) gave the best staining results. Procedure: paraffin sections to water; 0.5% Li2CO3 to remove picric acid; 20% tannic acid, 15 min; wash well; 2-4 sec in 0.5% basic fuchsin containing 10% alcohol; rinse, then differentiate in 1% aniline in 90% alcohol until alpha cells are red and beta cells pink; 1% phosphomolybdic acid, 1 min; 5% hematoxylin in 2% iron alum, 0.5 min; wash well; 1% filtered alcian blue SGX, 15 sec; rinse, dehydrate, clear, and mount in synthtic resin. Results: reticular fibers, black; acinar cells, orange to gray; alpha cells, red; collagenous fibers, red; beta cells, gray granules; ducts, bluish-green. The method was tested on rat, rabbit, dog, hamster, cow and man.  相似文献   

17.
A method of preparing bone or teeth for sectioning is described which involves the following steps: 48 hr. in 1:10 formalin; 24 hr. in 70% alcohol; decalcification for several days in 10% HNO3; rinsing and transferring to 2% potassium alum for 12 hr.; rinsing and treating with 5% NaHCO3 (or Li2CO3) for 24 hr.; washing for 12-24 hr.; then passing through ascending grades of alcohol to xylene. In the case of developing teeth, a slightly different procedure is recommended: fixation in Heidenhain's Susa till hard tissue is decalcified; 24 hr. in 96% alcohol (with three changes); 24 hr. in absolute alcohol (with one change); clearing in xylene or chloroform, and embedding in paraffin.  相似文献   

18.
The following method for staining bone and cartilage allows study of the gross cleared specimen and does not injure the tissues for subsequent microscopic study: Fix in 10% neutral formalin; bleach thoroughly in 3% H2O2 in sunlight. Wash in distilled water. Stain bone 24 hours in 0.01 g. of Biebrich scarlet in 100 ml. of distilled water. Destain in 95% alcohol until soft tissues and cartilage are colorless. Stain cartilage 24 hours in a pH2 buffer solution of 2.1g. of citric acid per 100 ml. of water with 0.001 g. of methylene blue. Destain in pH2 buffer solution until soft tissues are pale. Dehydrate in two changes of 95% alcohol in preparation for clearing. (This completes the destaining and may remove too much stain from the cartilage if destaining in the pH2 solution has been carried too far.) Place in Groat's clearing fluid and cover loosely so that the alcohol may evaporate, or remove the alcohol in vacuo. Groat's Mixture No. 19 is usually satisfactory.

For a combined stain, first stain bone, as above, and then apply the cartilage stain.

Seal jars with an ordinary liquid wood glue such as LePage's.  相似文献   

19.
Tissue blocks 2 × 2 × 0.4 cm were fixed 6-24 hr in phosphate-buffered 5% glutaraldehyde then sliced to 2 × 2 × 0.1 cm and soaked in 0.1 phosphate-buffer (pH 7.3) for at least 12 hr. Fixation was continued for 2 hr in phosphate-buffered 1-2% OsO4. The slices were dehydrated, infiltrated with Araldite, and embedded in flat-bottomed plastic molds. Sectioning at 1-8 μ with a sliding microtome was facilitated by addition of 10% dibutylphthalate to the standard epoxy mixture. The sections were spread on warm 1% gelatin and attached to glass slides by drying, baking at 60 C, fixing in 10% formalin or 5% glutaraldehyde and baking again. Sections were mordanted in 5% KMnO4 (5 min), bleached with 5% oxalic acid (5 min) and neutralized in 1% Li2CO3 (1 min). Several stains could then be applied: azure B, toluidine blue, azure B-malachite green, Stirling's gentian violet, MacCallum's stain (modified), tribasic stain (modified) and phosphotungstic acid-hematoxylin. Nuclei, mitochondria, specific granules, elastic tissue or collagen were selectively emphasized by appropriate choice of staining procedures, and cytologic detail in 1-3 μ sections was superior to that shown by conventional methods. Selected areas from adjacent 4-8 μ sections could be re-embedded for ultramicrotomy and electron microscopy.  相似文献   

20.
For the demonstration of the sex chromatin body in human tissues, fixation in 95% alcohol or modified Davidson's solution (95% alcohol, 30; formalin, 20; glacial acetic acid, 10; distilled water, 30) was best. The staining procedure chosen for most materials is the following: Mounted preparations are coated with celloidin, hydrated, hydrolyzed 20 min in 52V HCl at 20-25°C, rinsed thoroughly in several changes of distilled water and transferred to a buffered thionin solution. This consists of 3 parts: (1) A saturated solution of thionin in 50% alcohol (filtered); (2) Michaelis buffer: sodium acetate (3 H2O), 9.714 gm; sodium barbiturate, 14.714 gm; CO2-free distilled water, 500 ml; and (3) 0.1N HCl. To make the staining solution, mix 28.0 ml of the buffer solution with 32.0 ml of 0.1N HCl and bring the total volume to 100.0 ml with the thionin solution. Its pH should be 5.7 × 0.2, and care should be exercised that no acid is carried over from the hydrolyzing solution, since this would progressively lower the pH. The staining time varies from 15 to 60 min, depending on the specimen, but the shortest time consistent with adequate staining gives the clearest preparations. Slides are rinsed in distilled water and 50% alcohol and allowed to remain in 70% alcohol until the heavy clouds of stain cease to appear. Differentiation is completed in 80% and 95% alcohol, followed by dehydration in absolute alcohol, clearing in xylene and applying a cover glass with a synthetic resin (G. T. Gurr's DePeX was used). The sex chromatin is deep blue-violet and sharply contrasted against the lightly colored particulate chromatin of the nucleus. Cytoplasm remains unstained but fibrin and related structures show metachromasia. Chromosomes are well demonstrated if present. The method works on all types of tissues, is simpler and quicker than the Feulgen method, and often yields superior results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号