首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bananas (Musa AAA Group, Cavendish Subgroup) were ripened over a range of temperatures from 15 to 35°C. The rate of ripening in both pulp and peel was accelerated with an increase in storage temperature up to about 24°C. Above this temperature the pulp softened and sweetened without the development of a fully yellow peel due to a decrease in the rate of chlorophyll breakdown. Peel carotenoid content was higher at 35°C than at 20°C.  相似文献   

2.
Cotyledons were excised from imbibed watermelon seeds, grown for 4 days in darkness on water or 10 M benzyladenine (BA) and then tested for the presence of the light-harvesting chlorophyll a/b protein (LHCP) and its mRNA. LHCP was assayed immunologically by western blotting of SDS gels: the protein was present in plastids, but it was not recovered with the thylakoid fraction. Antibodies directed against LHCP precipitated a 32 kDa polypeptide from translation products of poly(A) RNA of cotyledons only if these had been grown on BA. Taken together the data suggest that in absence of light cytokinins are necessary for the maintenance of a detectable level of LHCP-mRNA as well as for synthesis of the protein.  相似文献   

3.
杂交小麦不同发育时期叶绿素蛋白复合体的变化   总被引:1,自引:0,他引:1  
杂交小麦“901”在不同发育时期及不同叶位,叶片色素蛋白复合体含量均高于对照品种陕229,尤其表现在“901”的旗叶,而陕229的倒二叶在籽粒形成后期、灌浆期,略高于“901”,倒三叶在籽粒发育后期至成熟期“901”的含量要高于陕229。叶绿素蛋白复合体分析结果说明,在不同发育时期、不同叶位,“901”叶片色素蛋白复合体中含有较高的叶绿素b,尤其表现在籽粒形成后期的旗叶上。2个品种在不同发育时期,不同时叶位之间,色素蛋白复合体组分上没有差异。仅表现在成熟期,陕229的倒三叶各色素带含量减少,并且消失1条叶绿素蛋白复合体带,初步认为此带是LHCP的寡聚体之一,而“901”比陕229晚7d倒二叶上表现出样的现象,表明“901”叶片色素蛋白复合体抗衰老能力很强。  相似文献   

4.
5.
Ohki  Kaori  Honjho  Saori 《Photosynthesis research》1997,53(2-3):121-127
Chl a-containing, very small unicellular, eukaryotic phytoplankton (picophytoplankton) often become the dominant organisms near the bottom of the euphotic zone in the ocean, where light is limited, not only in intensity (about 0.5% of the surface irradiance), but also in quality (dominant in blue to green wavelengths). We have isolated picophytoplankton from subsurface waters (from 75 to 150 m in depth) of the Kuroshio area near Japan. EM observations showed that a single chloroplast occupies a large part of the cytoplasm. Some of the isolates have a flagellum. The major photosynthetic pigments found in these isolates were chlorophyll a and b. The light-harvesting chlorophyll a/b complex (LHCP) was isolated from three clones of picophytoplankton, one flagellated form (NIBB8001) and two coccoid forms (94B8100A and 94B5100C) . More than 50% of the total chlorophylls were recovered in the major LHCP fraction. A common feature of the major LHCPs isolated from the three picophytoplankton clones was a high abundance of chlorophyll b: the ratios of chlorophyll a to b were about 0.8, 0.7 and 0.6 for the clones NIBB8001, 94B8100A and 94B5100C, respectively. These values were very low compared with those in chlorophyll a/b-binding LHCIIs in higher plants and in the major chlorophyll a/b-binding LHCPs in microalgae (higher than 1.0). The major LHCP apoproteins of NIBB8001 and 94B5100C contained one major polypeptide; the apparent molecular masses analyzed with SDS-PAGE were about 22 kDa and 27 kDa, respectively. The major LHCP apoprotein of 94B8100A had two major polypeptides having apparent molecular masses of about 23 and 25 kDa. None of the thylakoid proteins cross-reacted with an antibody raised against the LHC II apoprotein of spinach. It is suggested that the high abundance of chlorophyll b in picophytoplankton, together with a large chloroplast in a small cell, enable them to utilize the reduced light in their habitat.  相似文献   

6.
We studied the difference in thermostability of photosystem Ⅱ (PSⅡ) and leaf lipid composition between a T-DNA insertion mutant rice (Oryza sativa L.) VG28 and its wild type Zhonghua11. Native green gel and SDS-PAGE electrophoreses revealed that the mutant VG28 lacked all light-harvesting chlorophyll a/b protein complexes. Both the mutant and wild type were sensitive to high temperatures, and the maximal efficiency of PSⅡ photochemistry (Fv/Fm) and oxygen-evolving activity of PSⅡ in leaves significantly decreased with increasing temperature. However, the PSⅡ activity of the mutant was markedly more sensitive to high temperatures than that of the wild type. Lipid composition analysis showed that the mutant had less phosphatidylglycerol and sulfoquinovosyl diacylglycerol compared with the wild type. Fatty acid analysis revealed that the mutant had an obvious decrease in the content of unsaturation of membrane lipids on the thermostability of PSll are discussed.  相似文献   

7.
Displacement of particles from the purified light-harvesting chlorophyll a/b protein aggregate (LHC) was studied in magnetic fields of various strengths (0 to 1.6 T) by polarized fluorescence measurements. Macromolecular aggregates of LHC have a considerable magnetic susceptibility which enables the particles to rotate and align with their nematic axes parallel with H. As LHC is embedded in a transmembrane direction thylakoids should align perpendicular to H, the mode of alignment experimentally observed in thylakoids. The value of the magnetic susceptibility could be estimated by relating it to the integral susceptibility of the chlorophyll molecules in LHC. The fitting of this value with the field strength dependency of the fluorescence polarization ratio (FP) revealed a relationship between the LHC content of various photosynthetic membranes and their capacity for alignment, which suggested that LHC might be the torque ordering chloroplasts in a magnetic field.Abbreviations LHC light-harvesting chlorophyll a/b protein - FP fluorescence polarization ratio, Iz/Iy  相似文献   

8.
pcb genes, encoding proteins binding light-harvesting chlorophylls, were cloned and sequenced from the Chl d-containing cyanobacterium, Acaryochloris marina, and the Chl b-containing cyanobacterium, Prochloron didemni. Both organisms contained two tandem pcb genes. Peptide fingerprinting confirmed the expression of one of the A. marina pcb genes. Phylogenetic tree reconstruction using distance-matrix and maximum-likelihood methods indicated a single origin of the pcb gene family, whether occurring in Chl b-containing or Chl d-containing organisms. This may indicate widespread lateral transfer of the Pcb protein-based light-harvesting system.  相似文献   

9.
PS Ⅱ light harvesting chlorophyll a/b protein complexes (LHC Ⅱ ) were isolated from chloroplast of spinach (Spinacia oleracea Mill. ) and cucumber (Cucumis sativus L. ). Comparative studies were made on the polymerized forms. Chl a/b ratio, spectral characteristics and polypeptide components of these two kinds of LHC Ⅱ. Experimental results showed that the LHC Ⅱ from spinach had a Chl a/b ratio of 1.33 and the LHC Ⅱ from cucumber had a Chl a/b ratio of 1.77. The spectral characteristics of the LHC Ⅱ from cucumber also indicated the enrichment of Chl b in this LHC Ⅱ . There was also obvious differences in the polypeptide components between these two kinds of LHC Ⅱ, the LHC Ⅱ of spinach contained a 27 kD and a 25 kD polypeptides, while the LHC Ⅱ of cucumber contained only a 27 kD polypeptide. This showed that the 25 kD polypeptide contained less Chl b. The analysis of the chlorophyll protein complexes showed that the monomer, dimer and trimer of the LHC Ⅱ of spinach were composed of two polypeptides, while all the polymerized forms of cucumber’s LHC Ⅱ were composed of one polypeptide.  相似文献   

10.
The photoregulation of chloroplast development in pea leaves has been studied by reference to three polypeptides and their mRNAs. The polypeptides were the large subunit (LSU) and the small subunit (SSU) of ribulose 1,5-bisphosphate carboxylase/oxygenase (RUBISCO), and the light-harvesting chlorophyll a/b protein (LHCP). The polypeptides were assayed by a sensitive radioimmune assay, and the mRNAs were assayed by hybridization to cloned DNA probes. LSU, LSU mRNA, and LHCP mRNA were detectable in etiolated seedlings but LHCP, SSU, and SSU mRNA were at or below the limit of detection. During the first 48 hr of de-etiolation under continuous white light, the mRNAs for LSU, SSU, and LHCP increased in concentration per apical bud by about 40-fold, at least 200-fold, and about 25-fold, respectively, while the total RNA content per apical bud increased only 3.5-fold. In the same period, the LSU, SSU, and LHCP contents per bud increased at least 60-, 100-, and 200-fold, respectively. The LHCP increased steadily in concentration during de-etiolation, whereas the accumulation LSU, SSU, and SSU mRNA showed a 24-hr lag. The accumulation of SSU, SSU mRNA, and LHCP mRNA showed classical red/far-red reversibility, indicating the involvement of phytochrome in the regulatory mechanism. LSU and LSU mRNA were induced equally well by red and far-red light. The LHCP failed to accumulate except under continuous illumination. These results indicate that the accumulation of SSU is controlled largely through the steady-state level of its mRNA, which is in turn almost totally dependent on light as an inducer and on phytochrome as one of the photoreceptors. The accumulation of LSU is largely but not totally determined by the level of its mRNA, which appears to be under strong photoregulation, which has yet to be shown to involve phytochrome. Phytochrome is involved in the regulation of LHCP mRNA levels but substantial levels of the mRNA also occur in the dark. LHCP accumulation is not primarily governed by the levels of LHCP mRNA but by posttranslational stabilization in which chlorophyll synthesis plays a necessary but not sufficient role.  相似文献   

11.
We studied the difference in thermostability of photosystem Ⅱ (PSII) and leaf lipid composition between a T-DNA insertion mutant rice (Oryza sativa L.) VG28 and its wild type Zhonghuau. Native green gel and SDS-PAGE electrophoreses revealed that the mutant VG28 lacked all light-harvesting chlorophyll a/b protein complexes. Both the mutant and wild type were sensitive to high temperatures, and the maximal efficiency of PSII photochemistry (FJ Fm) and oxygen-evolving activity of PSII in leaves significantly decreased with increasing temperature. However, the PSII activity of the mutant was markedly more sensitive to high temperatures than that of the wild type. Lipid composition analysis showed that the mutant had less phosphatidylglycerol and sulfoquinovosyl diacylglycerol compared with the wild type. Fatty acid analysis revealed that the mutant had an obvious decrease in the content of 16:1t and a marked increase in the content of 18:3 compared with the wild type. The effects of lipid composition and unsaturation of membrane lipids on the thermostability of PSII are discussed.  相似文献   

12.
13.
Five-day-old etiolated radish ( Raphanux salivux L. cv. Saxa) seedlings exposed to white continuous light in the presence of Cd2+ (0.2 mM) showed characteristic changes in their light-harvesting chlorophyll a/b protein complex II after 48 h of greening. The content of its oligomeric supramolecular form was greatly diminished with a concomitant increase in the level of the monomer. The isolation of highly purified light-harvesting chlorophyll a/b protein complex II from control and Cd2+ treated radish cotyledons and a detailed analysis of its structure and composition revealed that first of all, Cd2+ altered the content of the specific phosphatidylglycerol fatty acid - trans -Δ3-hexadecenoic acid, widely accepted as a component responsible for the oligomerization of this chlorophyll-protein complex. This fatty acid in the thylakoid membrane phosphatidylglycerol pool seems to be very sensitive to different environmental stresses lowering its content, which indicates the vital significance of this component for the supramolecular organization and proper functioning of the light-harvesting chlorophyll a/b protein complex II.  相似文献   

14.
Corn ( Zea mays L. cv. OP Golden Bantum) was grown under low irradiance blue, red or blue plus red light. Red was more effective than blue light for synthesis of Chl a, b and light-harvesting proteins (LHC-2) associated with photosystem 2(PS2). Blue light was slightly more effective for synthesis of light-harvesting proteins (LHC-1) associated with photosystem 1 (PS1), but below a fluence rate of 1 μmol m−2 s−1 the response to blue vs that to red depended on irradiance level. Blue light containing a small amount of red light was as effective as red light for Chl a and b synthesis, but no more effective than blue light for LHC-2 synthesis. Adding small amounts of blue light to red repressed the effect of red light on LHC-2 synthesis and produced irradiance response curves similar to those produced by blue alone for LHC-2 synthesis. This repression by blue light depended on the ratio of red to blue and the level of the blue light.  相似文献   

15.
Evergreen leaves of temperate climate plants are often subject to frosts. Changes in carbon gain patterns arise from freezing‐related tissue damage, and from interactions between light and temperature stress. We examined relationships between spatial patterns in freezing and concentrations of chlorophyll. Spatial patterns in pigmentation in leaves that had or had not been exposed to naturally occurring frosts were determined by conventional extraction techniques combined with high‐resolution hyperspectral imaging of reflectance from intact leaves. Predictive indices were developed to relate reflectance to chlorophyll content and chlorophyll a/b ratios within intact leaves. Leaves exposed to frosts had lower chlorophyll contents and more variable a/b ratios than protected leaves. In frost‐affected leaves, chlorophyll content was highest near leaf centres and decreased toward leaf tips and margins. Decline in chlorophyll content was associated with shifts in chlorophyll a/b ratios and increases in red pigmentation due to anthocyanin, with effects being greater on leaf sides exposed directly to the sun. These altered pigmentation patterns were consistent with patterns in freezing. The present results illustrate the fine scale of spatial variation in leaf response to freezing, and raise important questions about impacts of freezing on photosynthetic function in over‐wintering evergreens.  相似文献   

16.
17.
When grown heterotrophically in the dark on enriched culture medium, the pigment-deficient strain of Scenedesmus obliquus, mutant C-6E, is uniquely characterized by a complete deficiency in carotenoids and chlorophyll b while retaining a low level of chlorophyll a which is exclusively utilized in photosystem I-type reactions. The strain lacks photosystem II activity but exhibits all PS-I reactions tested, including P700 redox reactions, photoreduction of CO2 with hydrogen as electron donor, and O2 uptake following methyl viologen reduction. The mutant contains 10 times more P700 per chlorophyll than the wild type and develops the pigment-protein complex of PS-I, CP-I. The action spectrum for methyl viologen reduction compares favorable to the low temperature absorption spectrum of whole cells. Both the chlorophyll fluorescence excitation and emission spectra of pigment-protein complexes derived from cells of C-6E show patterns typical of PS-I. The strain lacks the LHCs and CP-II as well as their respective apoproteins. The absence of carotenoids appears to prevent the development of the normal variety of pigment-protein complexes and the accumulation of Chl b. This inability is also expressed by the presence of only single stranded thylakoid membranes in the chloroplast of C-6E. When heterotrophically grown cells of this mutant are exposed to white light of 8 or 22 W m?2, 50% of its chlorophyll is lost by photooxidation within 4 or 1.5 hours, respectively.  相似文献   

18.
It has been proven that the Ce content of cucumber (Cucumis sativus L. ) leaves was enhanced with the increase of CeC13 concentration in Hoagland solution. The Chl a/b ratio of cucumber leaves in the control was the same as that in the treated plant, both being 3.67. However, under lower light intensity, the Chl a/b ratio in leaves of the contral was 2.72 whereas that of the treated leaves was 2.86. It showed that only under lower light intensity Ce could decrease the contents of chlorophyll b in leaves. The authors also evidenced that Ce was able to accelerate the formation of chlorophyll-protein complexes of PS Ⅰ and 110 kD polypeptide and decrease the light harvesting complex protein and 27 kD polypeptide.  相似文献   

19.
20.
Kouril  Roman  Ilík  Petr  Naus  Jan  Schoefs  Benoit 《Photosynthesis research》1999,62(1):107-116
The concentration limits for spectrophotometric and spectrofluorimetric determinations of the chlorophyll (Chl) a/b ratio in barley leaves were studied using 80% acetone extracts at room temperature. The optimum sample absorbances (at 663.2 nm – maximum of the QY) band of Chl a) for the Chl a/b determination were determined. For given spectrometers and sample positions, these absorbances ranged between 0.2 and 1.0 and 0.008–0.1 for the absorption and fluorescence methods, respectively. Precision of the measurements and the distorting effects are discussed. The lower limits of both absorption and fluorescence methods depend on sensitivity of the spectrometers for the Chl b detection. The spectrophotometric determination of Chl a/b ratio at higher Chl concentrations can be distorted by the chlorophyll fluorescence signal. The extent of this distortion depends on sample-detector geometry in any given type of the spectrometer. The effect of inner filter of Chl molecules and the detection instrumental function affect the value of the upper limit for the spectrofluorimetric method. Both methods were applied to estimate the Chl a/b ratio in pigment extracts from greening barley leaves, which are characterized by a low Chl concentration and a high Chl a/b ratio at the beginning of greening process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号