首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the serum-deficient medium, the cultured Swiss 3T3 and CHO-K1 cells transit to the resting state. The rates of uridine phosphorylation and RNA synthesis in these cells are lowered. After the addition of fresh medium containing 10% serum, cell proliferation is induced. At the early stage of cell entrance into the cell cycle uridine transport through the cell plasma membrane remains unchanged in both cultures. During the 1st hour after serum addition the rate of uridine phosphorylation increases in 3T3 cells to remain practically unchanged in CHO-K1 cells. At this time, RNA synthesis in cells increases almost twofold in both cultures. A correlation has been revealed between the initial level of uridine phosphorylation in 3T3 cells and the percentage of its maximal elevation after serum addition. No such a correlation was observed for CHO-K1 cells. The rate of uridine phosphorylation in arrested CHO-K1 cells is higher than that in 3T3 cells. It has been included that the initial increase of uridine phosphorylation during serum stimulation may be not obligatory for all cell types, but depends on the level of uridine kinase activity before serum addition to the cells.  相似文献   

2.
1. Contact-inhibited confluent monolayers of WI-38 human diploid fibroblasts can be stimulated to divide by replacing the medium with fresh medium containing 30% foetal calf serum. 2. Of the cells 40–75% are stimulated to divide with a peak DNA synthesis between 15 and 21h and a peak mitotic index between 28 and 30h after stimulation. 3. In the first 12h before the initiation of DNA synthesis there is a biphasic increase in the incorporation of [3H]uridine into RNA of whole cells. 4. This is paralleled by a similar biphasic stimulation of chromatin template activity measured in vitro in a system in which purified cell chromatin is incubated with an exogenous RNA polymerase isolated from Escherichia coli. 5. The changes in chromatin template activity are believed to represent activation of the genome, with more sites available for RNA synthesis, and to account almost entirely for the changes in RNA synthesis occurring in the whole cell.  相似文献   

3.
Uridine transport and phosphorylation were studied in cultured Swiss 3T3 CHO-K1 cells, differing in their growth characteristics. Uridine was shown to be transported to the cell with a high rate. With the 2 micronM uridine concentration in the medium, the stationary level of free uridine in cells is reached 10 seconds following incubation at 25 degrees, and the further uridine uptake is limited by phosphorylation.. The uridine transport to the cell does not depend on the DNA synthesis level and the growth phase of 3T3 and CHO-K1 cells. With the increase in culture density, the rate of uridine phosphorylation decreases in 3T3 cells being actually unchanged in CHO-K1 cells. With the equal cell density in both the cases, the phosphorylation rate in CHO-K1 cells is by several times higher than that in 3T3 cells. A positive correlation between uridine phosphorylation rate and DNA synthesis has been observed under various cultivation condition of CHO-K1 cells.  相似文献   

4.
We have previously shown that 3,5,3'-triiodo-L-thyronine (L-T3) stimulates cell growth and a 4- to 8-fold increase in growth hormone mRNA in GH1 cells. These effects appear to be mediated by a thyroid hormone nuclear receptor with an equilibrium dissociation constant for L-T3 of 0.2 nM and an abundance of about 10,000 receptors per cell nucleus. In this report, we show that L-T3 exerts a pleiotypic effect on GH1 cells to rapidly (within 2 h) stimulate [3H]uridine uptake to a maximal value of 2.5- to 3-fold after 24 h. This results from an increase in the number of functional uridine "transport sites" as shown by studies documenting an increase in the apparent Vmax with no change in the Km, 17 microM. Although the labeling of the cellular uridine pool and pools of all phosphorylated uridine derivatives was increased by L-T3, there was no change in the relative amounts of the individual pools in cells incubated with or without hormone. The intracellular concentration of [3H]uridine was estimated to be similar to that of the medium, suggesting that facilitated transport mediates [3H]uridine uptake. That this increase in [3H]uridine transport was nuclear receptor-mediated is supported by the excellent correspondence of the L-T3 dose-response curve for [3H]uridine uptake and that for L-T3 binding to receptor. Finally, inhibition of protein synthesis by cycloheximide and RNA synthesis by actinomycin D demonstrated that the L-T3 effect required continuing protein and RNA synthesis. These results are consistent with an effect of the L-T3-nuclear receptor complex to increase uridine uptake in GH1 cells by altering the expression of gene(s) essential for the transport process.  相似文献   

5.
The syntheses of main macromolecular substances, in a whole wheat grain allowed to germinate, are triggered in the following order: RNA, protein, DNA. The RNA synthesis, as judged by [2-14C]uridine incorporation, is initiated almost immediately after the seeds are exposed to the optimal germination conditions, whereas [1-14C]leucine and [2-14C]thymidine incorporation begins to occur only 3 and 4 hr later, respectively. The initiation of protein synthesis is accompanied by an apparent cessation of uridine incorporation.  相似文献   

6.
7.
The rapid increase in uridine uptake produced by the addition of serum to quiescent cultures of fibroblasts is primarily caused by an enhanced rate of nucleoside phosphorylation. While quiescent and serum-stimulated cells display identical initial rates of transport, they show a considerable change in the composition of the acid-soluble pools labelled with [3H] uridine for five seconds. The radioactivity recovered in the phosphorylated pools increases 2-, 3-, 4- and 6-fold after addition of serum to cultures of Swiss 3T3 cells, tertiary mouse embryo fibroblasts, Swiss 3T6 and Balb 3T3, cells respectively. Furthermore, insulin, a growth factor isolated from medium conditioned by SV40 BHK cells (FDGF) and epidermal growth factor (EGF) also stimulate uridine phosphorylation within minutes. The initial rate of uridine uptake is 2- to 3-fold faster in rapidly growing normal and Simian virus 40 or polyoma virus transformed 3T3 cells as compared to untransformed 3T3 cells in the quiescent state. When quiescent cultures of 3T3 or mouse embryo cells are stimulated to leave G1 and enter into DNA synthesis, transport increases several hours after addition of serum and apparently coincides with the S phase of the cell cycle. The results demonstrate that an increase in uridine phosphorylation is a rapid metabolic response elicited by growth-promoting agents in a variety of cell types and that uridine transport and phosphorylation are independently regulated.  相似文献   

8.
9.
3,5,3'-Triiodo-L-thyronine (T3) regulates the growth rate and GH production of cultured GC cells, a rat pituitary tumor cell line. We have previously demonstrated a parallel increase in cellular content of DNA and nuclear T3 and glucocorticoid receptors during the DNA synthesis (S) phase of the GC cell growth cycle. To determine the relationship between the increase in nuclear hormone receptors and GH production in S-phase cultures, we measured the synthesis rate of GH by pulse-labeling with [3H]leucine and immunoprecipitation as well as the relative concentration of GH mRNA by dot hybridization employing formaldehyde-treated cytoplasm and GH cDNA. Total protein synthesis was similar in S-phase and asynchronous cultures. However, in comparison to asynchronous cultures, S-phase cells had an increased GH synthesis rate, p less than 0.005 (from 13,430 +/- 609 to 19,150 +/- 1160 cpm/10(6) cells/2 h) and increased GH mRNA, p less than 0.001 (from 7.2 +/- 1.2 to 14.5 +/- 1.5 relative A units). The S-phase-associated augmentation in GH production did not appear to result from a decrease in ADP-ribosylation induced by 2 mM thymidine treatment which was utilized for the S-phase synchronization. To determine whether increased GH mRNA and GH synthesis in S-phase was associated with an increase in synthesis of GH mRNA, we measured the incorporation of [3H]uridine into GH mRNA by incubating partially synchronized S-phase cells with [3H]uridine and isolating 3H-labeled GH mRNA by hybridization to GH cDNA immobilized on nitrocellulose filters. Total RNA synthesis was similar in asynchronous, S-phase and G1 cell populations. However, the mean incorporation of [3H]uridine into GH mRNA of S-phase cultures was decreased to 52, 59, and 61% (counts/min of GH mRNA/10(6) cells), 49, 59, and 65% (ppm of total RNA), and 64 and 69% (ppm of poly(A)+ RNA) of asynchronous cultures. Our studies show further that the decrease in [3H]uridine incorporation into GH mRNA did not result from a cell cycle specific change in efficiency of hybridization or exclusively to an S-phase associated increased rate of degradation of GH mRNA. Thus, despite increased nuclear T3 and glucocorticoid receptors and, increased GH mRNA and GH synthesis, the synthesis rate of GH mRNA appears decreased in S-phase GC cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Studies were performed to determine whether decreases in transport of calcium and glucose might be among the earliest changes triggered by the antigen-antibody reactions occurring on the cell surface of murine leukemia L5178Y cells after treatment with rabbit antisera. After treatment with antisera, in the absence of complement, these cells exhibited a decreased uptake of 45Ca, 2-deoxy[3H]glucose, and 3-0-methyl[3H]glucose. These changes occurred rapidly, within 2 minutes after the addition of antiserum, in contrast to the previously reported inhibitory effects of antiserum on DNA, RNA, and protein synthesis, which became demonstrable only after 4 to 8 hours. The kinetics of uptake of the radioactive substrates was biphasic, with a very rapid initial uptake followed by less rapid linear uptake. The precise mechanism of cell growth inhibition remains to be elucidated, but one of the initial effects of antiserum treatment may be a perturbation at the cell membrane such that transport of specific nutrients is decreased, resulting in the observed effects on macromolecular synthesis.  相似文献   

11.
Through a receptor-mediated process glucocorticosteroids block cell division by 20–45 hours in SV40-transformed 3T3 (SV3T3) mouse fibroblasts growing in a low calf serum (0.30% v/v) medium containing biotin. However, the rate of DNA synthesis, determined at various times after dexamethasone addition by the incorporation of radioactive thymidine into acid-insoluble material, is not inhibited by this steroid as late as 66 hours. A modest decrease is observable by 91 hours. There is also no reduction in the uptake of exogenous thymidine into acid-soluble cellular pools. Similarly, RNA synthesis and the uptake of radioactive uridine are not affected by the glucocorticoid up to 69 hours. Measurements of the amounts of cellular DNA (by the fluorescent dye, 4′,6-diamidino-2-phenylindole) and protein revealed that both macromolecules are present in elevated quantities in steroid-treated cells. (The constancy of the protein content in the nonproliferative stage suggests that protein synthesis and degradation are occurring at equal rates.) If the steroid is removed and fresh 10% calf serum medium added, cell division commences (even if nearly 90% of protein synthesis is inhibited by cycloheximide) as early as 45 minutes later such that by 2 hours the viable cell count increases by as much as 70%. Since the growth curve after recovery resembles a step function, it appears that the cells are partially synchronized by the glucocorticoid. These results demonstrate that the glucocorticoid cytostatic effect in SV3T3 cells is the result of a block not in G1, as previously thought, but in G2.  相似文献   

12.
The effects of ACTH and 8-Br-cAMP on growth and replication of a functional mouse adrenal tumor cell line (Y-1) were investigated. ACTH and 8-Br-cAMP both inhibited DNA synthesis and replication when added to randomly growing cell cultures. ACTH addition and serum deprivation each arrested cells in G1; an additional point of arrest in G2 occurred with 8-Br-cAMP. Cells whose growth was arrested in G1 by ACTH had a significantly larger volume and protein and RNA content compared to cells arrested in G1 by serum deprivation. When ACTH or 8-Br-cAMP was added with serum to cells arrested by serum deprivation, the wave of DNA synthesis and cell division seen with serum was abolished. ACTH and 8-Br-cAMP had no effect on the serum-induced increases in protein and RNA content, rates of leucine incorporation into protein and uridine incorporation into RNA, and RNA polymerase I activity observed in cells during the pre-replicative period. Partial inhibition of the serum-induced increase in uridine transport occurred. ACTH and cAMP do not appear to inhibit replication by generalized negative pleiotypic effects but rather to inhibit the initiation of DNA synthesis more specifically. The ACTH-arrested Y-1 cell resembles an in vivo hypertrophied adrenal cortical cell.  相似文献   

13.
Fibroblast growth factor (FGF) plus insulin induced DNA synthesis in and proliferation of NIH/3T3 cells. The protein kinase C-activating phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), inhibited both the DNA synthesis and cell proliferation induced by FGF plus insulin. The concentration of TPA required for 50% inhibition of the DNA synthesis was about 5 nM. Phorbol-12,13-dibutyrate, another protein kinase C-activating phorbol ester, also inhibited the DNA synthesis but 4 alpha-phorbol-12,13-didecanoate, known to be inactive for this enzyme, was ineffective. DNA synthesis started at about 12 h after the addition of FGF plus insulin. The inhibitory action of TPA on the DNA synthesis was observed when it was added within 12 h after the addition of FGF plus insulin. These results suggest that phorbol esters exhibit an antiproliferative action through protein kinase C activation in NIH/3T3 cells, and that this action of phorbol esters is due to inhibition of the progression from the late G1 to the S phase of the cell cycle.  相似文献   

14.
15.
3-Aminobenzamide (3AB) is an inhibitor of poly (ADP-ribose) polymerase (PARP), an enzyme implicated in the maintenance of genomic integrity, which is activated in response to radiation-induced DNA strand breaks. cDNA macroarray membranes containing 1536 clones were used to characterize the gene expression profiles displayed by mouse BALB/3T3 fibroblasts (A31 cell line) in response to ionizing irradiation alone or in combination with 3AB. A31 cells in exponential growth were pre-treated with 3AB 4mM 1h before gamma-irradiation (4Gy), remaining in culture during 6h until harvesting time. A31 cells treated with 3AB alone presented a down-regulation in genes involved in protein processing and cell cycle control, while an up-regulation of genes involved in apoptosis and related to DNA/RNA synthesis and repair was verified. A31 cells irradiated with 4Gy displayed 41 genes differentially expressed, being detected a down-regulation of genes involved in protein processing and apoptosis, and genes controlling the cell cycle. Concomitantly, another set of genes for protein processing and related to DNA/RNA synthesis and repair were found to be up-regulated. A positive or negative interaction effect between 3AB and radiation was verified for 29 known genes. While the combined treatment induced a synergistic effect on the expression of LCK proto-oncogene and several genes related to protein synthesis/processing, a negative interaction effect was found for the expression of genes related to cytoskeleton and extracellular matrix assembly (SATB1 and Anexin III), cell cycle control (tyrosine kinase), and genes participating in DNA/RNA synthesis and repair (RNA helicase, FLAP endonuclease-1, DNA-3 glycosylase methyladenine, splicing factor SC35 and Soh1). The present data open the possibility to investigate the direct participation of specific genes, or gene products acting in concert in the mechanism underlying the cell response to radiation-induced DNA damage under the influence of PARP inhibitor.  相似文献   

16.
17.
The effects of the mitogenic monoclonal antibody OKT3 on the metabolic changes preceding DNA synthesis during the activation of human peripheral blood mononuclear cells were compared with those induced by PHA. The aspects studied included uridine transport, the incorporation of inositol into phospholipids, Na+-dependent amino acid uptake, and protein synthesis. All four parameters were increased in response to the ligation of the T lymphocyte receptor recognized by OKT3. These changes were apparent as early as the corresponding changes induced by PHA. However, the increases in uridine uptake and inositol incorporation were disproportionately reduced when compared to those caused by PHA, and no evidence of high-dose inhibition was seen in cells activated by OKT3. This suggests that at least some lectin-induced changes in metabolism are mediated through additional mechanisms, probably involving distinct receptors.  相似文献   

18.
At cytostatic concentrations, phenethyl alcohol has immediate and reversible effects on multiple metabolic processes of Novikoff rat hepatoma cells growing in suspension culture. These include an inhibition of the transport of various low molecular weight substances into the cell, an inhibition of DNA and protein synthesis and the processing of ribosomal RNA, and a degradation of ribosomal RNA. All effects might be explained as resulting from an interaction of the chemical with cellular membranes. Phenethyl alcohol does not have an immediate effect on RNA synthesis per se. The immediate failure of phenethyl alcohol-treated cells to incorporate uridine from the medium into RNA is due to an inhibition of the uridine transport reaction.  相似文献   

19.
Serum, elevated pH, excess Zn++, 9,10 dimethyl-1,2 dibenzanthracene (DMBA) and insulin accelerate the progress of growth-inhibited chick embryo cells into the S-period of DNA synthesis. A comparative study was made of their capacity to elicit other cellular responses within two hours after their application. All the agents studied stimulated the uptake of the glucose analogue 2-deoxy-D-glucose (2-dGlc). Elevated pH elicited a more striking increase than the other agents in the uptake of the amino acid analogue alpha-amino isobutyric acid (AIB). The application of subtoxic concentrations of Zn++ or DMBA did not stimulate the uptake of uridine by cells nor its incorporation into RNA when tested at 2 hours. However, it was found that the stimulation of uridine utilization did occur but was delayed several hours. Similarly, the accelerated onset of DNA synthesis was also delayed for several hours by these agents. Insulin acted like serum in stimulating the utilization of 2-dGlc, AIB and uridine. Serum and DMBA were particularly effective in stimulating the utilization of choline. It was concluded that the utilization of 2-dGlc, uridine and thymidine are affected similarly by all the agents, but that there may be differential effects in the utilization of AIB and choline. The inhibition of RNA synthesis by actinomycin D did not prevent the relative stimulation of 2-dGlc, AIB and choline utilization by serum and pH treatment. The inhibition of protein synthesis by cycloheximide did not prevent the relative stimulation of 2-dGlc and choline utilization by serum and pH treatment. It partially blocked the increased uptake of AIB and had erratic effects on the utilization of uridine. It was concluded that neither RNA nor protein synthesis is required for some, if not all, the early responses to growth stimuli measured here. The inhibited cell appears to be a poised system which carries out a programmed array of reactions characteristic of the cell type following perturbation by a variety of unrelated agents. In vivo specificity is provided by the physiological reagents available (i.e., hormones) and their capacity to interact with different cell types.  相似文献   

20.
Summary The spatial and temporal patterns of macromolecular syntheses in oocytes and somatic auxiliary cells of the snail Planorbarius corneus have been investigated by autoradiography and cytophotometry. Oogenesis has been divided into three stages, comprising early meiosis up to diplotene (stage I), previtellogenetic growth phase (stage II), and vitellogenesis (stage III). No DNA synthesis was found in any oocyte stage. In stage-I oocytes, only nucleoli were found labelled with 3H-uridine. Oocyte nuclei of stage II and III actively synthesize RNA in nucleoli and chromosomes. The most intense incorporation of uridine in chromatin probably occurs during the previtellogenesis — vitellogenesis transition period during which cytological findings suggest well developed lampbrush chromosomes. RNA synthesis in amphinucleoli of stage-III oocytes is restricted to basophilic nucleolar parts, whereas acidophilic parts (protein bodies) neither synthesize nor store RNA. During vitellogenesis oocytes incorporate amino acids into yolk platelet proteins. Radioactive proteins are found in yolk platelet precursors 5 h after injection of the tracer and in yolk platelets 3 h thereafter. The labelling pattern suggests that oocytes synthesize certain hitherto unidentified yolk components. No evidence for the participation of follicle cells in synthesis and transport of vitellogenic proteins has been obtained from autoradiography. Cytological findings suggest an important role for these cells in oogenesis. They are highly active in RNA and protein synthesis. Cellular differentiation is accompanied by polyploidization of the nuclei which attain a highest DNA content of 256 c. Polyploidization probably occurs in incremental steps as indicated by complete endomitotic chromosomal cycles. Autoradiographs show that, during vitellogenesis, oocytes do not incorporate significant amounts of glucose, and only certain follicle cells were labelled with glucose, probably indicating the synthesis of glycogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号