首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pathogen-associated molecular patterns (PAMPs) signal through Toll-like receptors (TLRs) to activate immune responses, but prolonged exposure to PAMPs from Mycobacterium tuberculosis (MTB) and other pathogens inhibits class II MHC (MHC-II) expression and Ag processing, which may allow MTB to evade CD4(+) T cell immunity. Alternate class I MHC (MHC-I) processing allows macrophages to present Ags from MTB and other bacteria to CD8(+) T cells, but the effect of PAMPs on this processing pathway is unknown. In our studies, MTB and TLR-signaling PAMPs, MTB 19-kDa lipoprotein, CpG DNA, and LPS, inhibited alternate MHC-I processing of latex-conjugated Ag by IFN-gamma-activated macrophages. Inhibition was dependent on TLR-2 for MTB 19-kDa lipoprotein (but not whole MTB or the other PAMPs); inhibition was dependent on myeloid differentiation factor 88 for MTB and all of the individual PAMPs. Inhibition of MHC-II and alternate MHC-I processing was delayed, appearing after 16 h of PAMP exposure, as would occur in chronically infected macrophages. Despite inhibition of alternate MHC-I Ag processing, there was no inhibition of MHC-I expression, MHC-I-restricted presentation of exogenous peptide or conventional MHC-I processing of cytosolic Ag. MTB 19-kDa lipoprotein and other PAMPs inhibited phagosome maturation and phagosome Ag degradation in a myeloid differentiation factor 88-dependent manner; this may limit availability of peptides to bind MHC-I. By inhibiting both MHC-II and alternate MHC-I Ag processing, pathogens that establish prolonged infection of macrophages (>16 h), e.g., MTB, may immunologically silence macrophages and evade surveillance by both CD4(+) and CD8(+) T cells, promoting chronic infection.  相似文献   

2.
The transporter associated with antigen processing (TAP) and the major histocompatibility complex class I (MHC-I), two important components of the MHC-I antigen presentation pathway, are often deficient in tumor cells. The restoration of their expression has been shown to restore the antigenicity and immunogenicity of tumor cells. However, it is unclear whether TAP and MHC-I expression in tumor cells can affect the induction phase of the T cell response. To address this issue, we expressed viral antigens in tumors that are either deficient or proficient in TAP and MHC-I expression. The relative efficiency of direct immunization or immunization through cross-presentation in promoting adaptive T cell responses was compared. The results demonstrated that stimulation of animals with TAP and MHC-I proficient tumor cells generated antigen specific T cells with greater killing activities than those of TAP and MHC-I deficient tumor cells. This discrepancy was traced to differences in the ability of dendritic cells (DCs) to access and sample different antigen reservoirs in TAP and MHC-I proficient versus deficient cells and thereby stimulate adaptive immune responses through the process of cross-presentation. In addition, our data suggest that the increased activity of T cells is caused by the enhanced DC uptake and utilization of MHC-I/peptide complexes from the proficient cells as an additional source of processed antigen. Furthermore, we demonstrate that immune-escape and metastasis are promoted in the absence of this DC 'arming' mechanism. Physiologically, this novel form of DC antigen sampling resembles trogocytosis, and acts to enhance T cell priming and increase the efficacy of adaptive immune responses against tumors and infectious pathogens.  相似文献   

3.
APCs process mammalian heat shock protein (HSP):peptide complexes to present HSP-chaperoned peptides on class I MHC (MHC-I) molecules to CD8(+) T cells. HSPs are also expressed in prokaryotes and chaperone microbial peptides, but the ability of prokaryotic HSPs to contribute chaperoned peptides for Ag presentation is unknown. Our studies revealed that exogenous bacterial HSPs (Escherichia coli DnaK and Mycobacterium tuberculosis HSP70) delivered an extended OVA peptide for processing and MHC-I presentation by both murine macrophages and dendritic cells. HSP-enhanced MHC-I peptide presentation occurred only if peptide was complexed to the prokaryotic HSP and was dependent on CD91, establishing CD91 as a receptor for prokaryotic as well as mammalian HSPs. Inhibition of cytosolic processing mechanisms (e.g., by transporter for Ag presentation deficiency or brefeldin A) blocked HSP-enhanced peptide presentation in dendritic cells but not macrophages. Thus, prokaryotic HSPs deliver chaperoned peptide for alternate MHC-I Ag processing and cross-presentation via cytosolic mechanisms in dendritic cells and vacuolar mechanisms in macrophages. Prokaryotic HSPs are a potential source of microbial peptide Ags during phagocytic processing of bacteria during infection and could potentially be incorporated in vaccines to enhance presentation of peptides to CD8(+) T cells.  相似文献   

4.
Dendritic cells (DCs) are capable of cross-presenting exogenous Ag to CD8(+) CTLs. Detection of microbial products by Toll-like receptors (TLRs) leads to activation of DCs and subsequent orchestration of an adaptive immune response. We hypothesized that microbial TLR ligands could activate DCs to cross-present Ag to CTLs. Using DCs and CTLs in an in vitro cross-presentation system, we show that a subset of microbial TLR ligands, namely ligands of TLR3 (poly(inosinic-cytidylic) acid) and TLR9 (immunostimulatory CpG DNA), induces cross-presentation. In contrast to presentation of Ag to CD4(+) T cells by immature DCs, TLR-induced cross-presentation is mediated by mature DCs, is independent of endosomal acidification, and relies on cytosolic Ag processing machinery.  相似文献   

5.
Exogenous heat shock protein (HSP):peptide complexes are processed for cross-presentation of HSP-chaperoned peptides on class I MHC (MHC-I) molecules. Fusion proteins containing HSP and Ag sequences facilitate MHC-I cross-presentation of linked antigenic epitopes. Processing of HSP-associated Ag has been attributed to dendritic cells and macrophages. We now provide the first evidence to show processing of HSP-associated Ag for MHC-I cross-presentation by B lymphocytes. Fusion of OVA sequence (rOVA, containing OVA(230-359) sequence) to Mycobacterium tuberculosis HSP70 greatly enhanced rOVA processing and MHC-I cross-presentation of OVA(257-264):K(b) complexes by B cells. Enhanced processing was dependent on linkage of rOVA sequence to HSP70. M. tuberculosis HSP70-OVA fusion protein enhanced cross-processing by a CD91-dependent process that was independent of TLR4 and MyD88. The enhancement occurred through a post-Golgi, proteasome-independent mechanism. These results indicate that HSPs enhance delivery and cross-processing of HSP-linked Ag by B cells, which could provide a novel contribution to the generation of CD8(+) T cell responses. HSP fusion proteins have potential advantages for use in vaccines to enhance priming of CD8(+) T cell responses.  相似文献   

6.
CD8+ T cells are generated in response to Leishmania major (Lm) or Toxoplasma gondii parasitic infections, indicating that exogenously delivered Ag can be processed for presentation by MHC class I molecules. We show that presentation of Lm nucleotidase (NT)-OVA is TAP independent in vivo and in vitro, and is inhibited by chloroquine, but not by proteasome inhibitors. In contrast, the presentation of T. gondii P30-OVA relies on the TAP/proteasome pathway. Presentation of OVA- or rNT-OVA-coated beads also bypassed TAP requirement above a certain Ag threshold. TAP was also dispensable for the presentation of wild-type Lm Ags to primed CD8+ T cells in vitro. Finally, in vivo priming of CD8+ T cells involved in acquired resistance to Lm was not compromised in TAP-deficient mice. Thus, Leishmania Ags appear to be confined to an intraphagosomal processing pathway that requires higher concentrations of Ags, suggesting that these parasites may have evolved strategies to impair the efficient endoplasmic reticulum-based, TAP-dependent cross-presentation pathway to avoid or delay CD8+ T cell priming.  相似文献   

7.
The development of Ag-presenting functions by murine dendritic cells (DCs) of the CD8(+) DC lineage was studied using a Flt-3 ligand stimulated bone-marrow culture system. Although newly formed DCs of this lineage are capable of Ag uptake and efficient presentation to T cells on MHC class II, they initially lack the ability to cross-present exogenous Ags on MHC class I. Cross-presentation capacity is acquired as a subsequent maturation step, promoted by cytokines such as GM-CSF. The development of cross-presentation capacity by the DCs in these cultures may be monitored by the parallel development of DC surface expression of CD103. However, the expression of CD103 and cross-presentation capacity are not always linked; therefore, CD103 is not an essential part of the cross-presentation machinery. These results explain the considerable variability in CD103 expression by CD8(+) DCs as well as the findings that not all DCs of this lineage are capable of cross-presentation.  相似文献   

8.
Alternate class I MHC (MHC-I) Ag processing via cytosolic or vacuolar pathways leads to cross-presentation of exogenous Ag to CD8 T cells. Vacuolar alternate MHC-I processing involves phagolysosomal Ag proteolysis and peptide binding to MHC-I in post-Golgi compartments. We report the first study of alternate MHC-I Ag processing in tapasin(-/-) cells and experiments with tapasin(-/-) and TAP1(-/-) macrophages that characterize alternate MHC-I processing. Tapasin promotes retention of MHC-I in the endoplasmic reticulum (ER) for loading with high affinity peptides, whereas tapasin(-/-) cells allow poorly loaded MHC-I molecules to exit the ER. Hypothetically, we considered that a large proportion of post-Golgi MHC-I on tapasin(-/-) cells might be peptide-receptive, enhancing alternate MHC-I processing. In contrast, alternate MHC-I processing was diminished in both tapasin(-/-) and TAP1(-/-) macrophages. Nonetheless, these cells efficiently presented exogenous peptide, suggesting a loss of MHC-I stability or function specific to vacuolar processing compartments. Tapasin(-/-) and TAP1(-/-) macrophages had decreased MHC-I stability and increased susceptibility of MHC-I to inactivation by acidic conditions (correlating with vacuolar pH). Incubation of tapasin(-/-) or TAP1(-/-) cells at 26 degrees C decreased susceptibility of MHC-I to acid pH and reversed the deficiency in alternate MHC-I processing. Thus, tapasin and TAP are required for MHC-I to bind ER-derived stabilizing peptides to achieve the stability needed for alternate MHC-I processing via peptide exchange in acidic vacuolar processing compartments. Acidic pH destabilizes MHC-I, but also promotes peptide exchange, thereby enhancing alternate MHC-I Ag processing. These results are consistent with alternate MHC-I Ag processing mechanisms that involve binding of peptides to MHC-I within acidic vacuolar compartments.  相似文献   

9.
Dendritic cells (DCs) progress through distinct maturational phases; immature DCs capture Ag while mature DCs are optimized for Ag presentation. Proper control of immunity requires regulated compartmentalization of MHC class II molecules. We report that DCs also regulate MHC class I trafficking throughout maturation. Although mature human DCs express high levels of surface MHC class I, immature DCs exhibit lower surface levels while retaining MHC class I-peptide complexes in the Golgi. A cell line, KG-1, behaves similarly. We confirm the similarity of KG-1 to DCs by demonstrating its capacity to present exogenous Ags in an MHC class I-restricted fashion to CD8(+) T cell hybridomas, a phenomenon called cross-presentation. Biochemical characterization of MHC class I trafficking throughout maturation showed that, in early KG-1 dendritic-like cells, surface arrival of MHC class I-peptide complexes is delayed by their retention in the Golgi. In mature dendritic-like cells, these complexes relocate to the surface and their stability increases, concomitant with up-regulation of costimulatory molecules. Maturation induces qualitative changes in the MHC class I-associated peptide repertoire demonstrated by increased thermostability. The differential processing of MHC class I throughout maturation may prevent premature immune activation while promoting T cell responses in lymph nodes to Ags acquired at sites of inflammation.  相似文献   

10.
The FcγRs found on macrophages (Ms) and dendritic cells (DCs) efficiently facilitate the presentation or cross-presentation of immune-complexed Ags to T cells. We found that the MHC class I-related neonatal FcR for IgG (FcRn) in both Ms and DCs failed to have a strong effect on the cross-presentation of immune complex (IC) OVA Ag to CD8(+) T cells. Interestingly, endosomal FcRn enhanced the presentation of the monomeric OVA-IC to CD4(+) T cells robustly, whereas FcRn in phagosomes exerted distinctive effects on Ag presentation between Ms and DCs. The presentation of phagocytosed OVA-ICs to CD4(+) T cells was considerably enhanced on wild-type versus FcRn-deficient Ms, but was not affected in FcRn-deficient DCs. This functional discrepancy was associated with the dependence of IgG-FcRn binding in an acidic pH. Following phagocytosis, the phagosomal pH dropped rapidly to <6.5 in Ms but remained in the neutral range in DCs. This disparity in pH determined the rate of degradation of phagocytosed ICs. Thus, our findings reveal that FcRn expression has a different effect on Ag processing and presentation of ICs to CD4(+) T cells in the endosomal versus phagosomal compartments of Ms versus DCs.  相似文献   

11.
Dendritic cell (DC) Ag cross-presentation is generally associated with immune responses to tumors and viral Ags, and enhancement of this process is a focus of tumor vaccine design. In this study, we found that the myeloid cell surface peptidase CD13 is highly and specifically expressed on the subset of DCs responsible for cross-presentation, the CD8(+) murine splenic DCs. In vivo studies indicated that lack of CD13 significantly enhanced T cell responses to soluble OVA Ag, although development, maturation, and Ag processing and presentation of DCs are normal in CD13KO mice. In vitro studies showed that CD13 regulates receptor-mediated, dynamin-dependent endocytosis of Ags such as OVA and transferrin but not fluid-phase or phagocytic Ag uptake. CD13 and Ag are cointernalized in DCs, but CD13 did not coimmunoprecipitate with Ag receptors, suggesting that CD13 does not control internalization of specific receptors but regulates endocytosis at a more universal level. Mechanistically, we found that phosphorylation of the endocytic regulators p38MAPK and Akt was dysregulated in CD13KO DCs, and blocking of these kinases perturbed CD13-dependent endocytic uptake. Therefore, CD13 is a novel endocytic regulator that may be exploited to enhance Ag uptake and T cell activation to improve the efficacy of tumor-targeted vaccines.  相似文献   

12.
13.
Dendritic cells (DCs) promote adaptive immunity by cross-presenting antigen-based epitopes to CD8+ T cells. DCs process internalized protein antigens into peptides that enter the endoplasmic reticulum (ER), bind to major histocompatibility type I (MHC-I) protein complexes, and are transported to the cell surface for cross-presentation. DCs can exhibit activation of the ER stress sensor IRE1α without ER stress, but the underlying mechanism remains obscure. Here, we show that antigen-derived hydrophobic peptides can directly engage ER-resident IRE1α, masquerading as unfolded proteins. IRE1α activation depletes MHC-I heavy-chain mRNAs through regulated IRE1α-dependent decay (RIDD), curtailing antigen cross-presentation. In tumor-bearing mice, IRE1α disruption increased MHC-I expression on tumor-infiltrating DCs and enhanced recruitment and activation of CD8+ T cells. Moreover, IRE1α inhibition synergized with anti–PD-L1 antibody treatment to cause tumor regression. Our findings identify an unexpected cell-biological mechanism of antigen-driven IRE1α activation in DCs, revealing translational potential for cancer immunotherapy.  相似文献   

14.
The effect of dendritic cell (DC) maturation on MHC class II-restricted Ag presentation is well studied, but less is known about the effects of DC maturation on MHC class I-restricted cross-presentation. We investigated the ability of mature DCs to present Ags from cells infected with HSV-1. Pretreatment with pure LPS increased cross-presentation in a manner dependent on both MyD88 and Toll/IL-1R domain-containing adaptor inducing IFN-β, whereas a similar dose of a less pure LPS preparation inhibited cross-presentation. The difference could not be attributed to differences in uptake or phenotypic maturation. The likely contaminant responsible for shutting down cross-presentation is peptidoglycan (PGN). Addition of PGN to pure LPS abrogated its ability to enhance cross-presentation. Direct activation of DCs with PGN inhibited cross-presentation through nucleotide-binding oligomerization domain-like receptor signaling. These results demonstrate that different maturation stimuli can have opposite impacts on the ability of DCs to cross-present viral Ags.  相似文献   

15.
Cross-presentation allows the processing of Ags from donor cells into the MHC class I presentation pathway of dendritic cells (DCs). This is important for the generation of cytotoxic T cell immunity and for induction of self tolerance. Apoptotic cells are reported to be efficient targets for cross-presentation, and in vitro studies using human DCs have implicated CD36 in their capture. In support of a role for CD36 in cross-presentation, we show that this molecule is differentially expressed by CD8(+) splenic DCs, which previously have been identified as responsible for cross-presentation in the mouse. Three different cross-presentation models were examined for their dependence on CD36. These included cross-priming to OVA-coated spleen cells and cross-tolerance to OVA transgenically expressed in the pancreatic islet beta cells under constitutive conditions or during beta cell destruction. In these models, CD36 knockout DCs were equivalent to wild-type DCs in their capacity to cross-present either foreign or self Ags, indicating that CD36 is not essential for cross-presentation of cellular Ags in vivo.  相似文献   

16.
Dendritic cells (DCs) are critical in initiating immune responses by cross-priming of tumor Ags to T cells. Previous results showed that NK cells inhibited DC-mediated cross-presentation of tumor Ags both in vivo and in vitro. In this study, enhanced Ag presentation was observed in draining lymph nodes in TRAIL(-/-) and DR5(-/-) mice compared with that of wild-type mice. NK cells inhibit DC cross-priming of tumor Ags in vitro, but not direct presentation of endogenous Ags. NK cells lacking TRAIL, but not perforin, were not able to inhibit DC cross-priming of tumor Ags. DCs that lack expression of TRAIL receptor DR5 were less susceptible to NK cell-mediated inhibition of cross-priming, and cross-linking of DR5 receptor led to reduced generation of MHC class I-Ag peptide complexes, followed by attenuated cross-priming of CD8(+) T cells. In addition, key molecules involved in the TRAIL/DR5 pathway during DC/NK cell interactions were determined. In summary, these data indicate a novel alternative pathway for DC/NK cell interactions in antitumor immunity and may reflect homeostasis of both DCs and NK cells for regulation of CD8(+) T cell function in physiological conditions.  相似文献   

17.
Induction of CTL responses by dendritic cell (DC)-based vaccines requires efficient DC-loading strategies for class I Ags. Coupling Ags to cell-penetrating peptides (CPPs) or receptor-specific Abs improves Ag loading of DCs. In contrast to CPPs, receptor-specific Abs deliver conjugated Ags to DCs with high specificity, which is advantageous for in vivo strategies. It has, however, been speculated that CPPs facilitate uptake and endosomal escape of conjugated Ags, which would potently enhance cross-presentation. In this study, we directly compare the in vitro targeting efficiency of a humanized D1 Ab directed against the human DC surface receptor DC-SIGN hD1 to that of three CPPs. The three CPPs colocalized within endosomes when targeted to human monocyte-derived DCs simultaneously, whereas hD1 was present in a different set of endosomes. However, within 75 min after uptake CPPs and hD1 colocalized extensively within the lysosomal compartment. Ab-mediated targeting of class I-restricted peptides to DC-SIGN enhanced cross-presentation of the peptides, while only one of the CPPs enhanced peptide presentation. This CPP and hD1 enhanced cross-presentation with equal efficiencies. Thus, we found no evidence of CPP specifically favoring the delivery of conjugated Ag to the DC class I presentation pathway. Given the specificity with which Abs recognize their targets, this favors the use of DC receptor-specific Abs for in vivo vaccination strategies.  相似文献   

18.
Archaeal isopranoid glycerolipid vesicles (archaeosomes) serve as strong adjuvants for cell-mediated responses to entrapped Ag. We analyzed the processing pathway of OVA entrapped in archaeosomes composed of Methanobrevibacter smithii lipids, high in archaetidylserine (OVA-archaeosomes). In vitro, OVA-archaeosomes stimulated spleen cells from OVA-TCR-transgenic mice, D011.10 (CD4(+) cells expressing OVA(323-339) TCR) or OT1 (>90% CD8(+) OVA(257-264) cells), indicating both MHC class I and II presentations. In vivo, when naive (Thy1.2(+)) CFSE-labeled OT1 cells were transferred into OVA-archaeosome-immunized Thy 1.1(+) recipient mice, there was profound accumulation and cycling of donor-specific cells, and differentiation of H-2K(b)Ova(257-264) CD8(+) T cells into CD44(high)CD62L(low) effectors. Both macrophages and dendritic cells (DCs) efficiently cross-presented OVA-archaeosomes on MHC class I. Blocking phagocytosis by phosphatidylserine-specific receptor agonists strongly inhibited MHC class I presentation of OVA-archaeosomes, whereas blocking mannose receptors or FcRs lacked effect, indicating specific recognition of the archaetidylserine head group of M. smithii lipids by APCs. In addition, inhibitors of endosomal acidification blocked MHC class I processing of OVA-archaeosomes, whereas endosomal protease inhibitors lacked effect, suggesting acidification-dependent phagosome-to-cytosol diversion. Proteasomal inhibitors blocked OVA-archaeosome MHC class I presentation, confirming cytosolic processing. Both in vitro and in vivo, OVA-archaeosome MHC class I presentation required TAP. Ag-free archaeosomes also activated DC costimulation and cytokine production, without overt inflammation. Phosphatidylserine-specific receptor-mediated endocytosis is a mechanism of apoptotic cell clearance and DCs cross-present Ags sampled from apoptotic cells. Our results reveal the novel ability of archaeosomes to exploit this mechanism for cytosolic MHC class I Ag processing, and provide an effective particulate vaccination strategy.  相似文献   

19.

Background

Cross-presentation by dendritic cells (DCs) is a crucial prerequisite for effective priming of cytotoxic T-cell responses against bacterial, viral and tumor antigens; however, this antigen presentation pathway remains poorly defined.

Methodology/Principal Findings

In order to develop a comprehensive understanding of this process, we tested the hypothesis that the internalization of MHC class I molecules (MHC-I) from the cell surface is directly involved in cross-presentation pathway and the loading of antigenic peptides. Here we provide the first examination of the internalization of MHC-I in DCs and we demonstrate that the cytoplasmic domain of MHC-I appears to act as an addressin domain to route MHC-I to both endosomal and lysosomal compartments of DCs, where it is demonstrated that loading of peptides derived from exogenously-derived proteins occurs. Furthermore, by chasing MHC-I from the cell surface of normal and transgenic DCs expressing mutant forms of MHC-I, we observe that a tyrosine-based endocytic trafficking motif is required for the constitutive internalization of MHC-I molecules from the cell surface into early endosomes and subsequently deep into lysosomal peptide-loading compartments. Finally, our data support the concept that multiple pathways of peptide loading of cross-presented antigens may exist depending on the chemical nature and size of the antigen requiring processing.

Conclusions/Significance

We conclude that DCs have ‘hijacked’ and adapted a common vacuolar/endocytic intracellular trafficking pathway to facilitate MHC I access to the endosomal and lysosomal compartments where antigen processing and loading and antigen cross-presentation takes place.  相似文献   

20.
Priming of CD8(+) T cells requires presentation of short peptides bound to MHC class I molecules of professional APCs. Cross-presentation is a mechanism whereby professional APC present on their own MHC class I molecules peptides derived from degradation of Ags synthesized by other Ag "donor cells." The mechanism of cross-presentation is poorly understood, and the nature of the transferred Ag is unknown. In this report, we demonstrate that the bulk of a cross-presented Ag transferred from donor cells recently infected with vaccinia virus are proteasomal products that are susceptible to peptidases within the donor cell cytosol and not full-length proteins or mature epitopes either free or bound to chaperones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号