共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
PCAF(P300/CBP associated factor,P300/CBP相关因子)是一种重要的组蛋白乙酰转移酶,主要通过使核小体组蛋白发生乙酰化而参与基因转录的调控。P300/CBP是一种能够与PCAF相互作用的宿主细胞蛋白,定位于细胞核ND10结构(nuclear dot10)。ND10是由70余种蛋白质分子组成的、以分散的斑点或团块样方式存在于细胞核内的大分子复合物,与基因转录调控过程有着密切关系。早幼粒细胞白血病蛋白(promyelocytic leukemia protein,PML)是ND10的主要组成成分,对于维持ND10的正常结构与功能至关重要。在成功构建pGBK-PML3、pGAD-PCAF、pGEX-PCAF、pFlag-PCAF和pcDNA-PML3重组质粒的基础上,用酵母双杂交证明PCAF与PML3之间存在着相互作用;用GST-pull down技术证明GST-PCAF能够将PML3蛋白捕获并沉降下来,表明在体外条件下两者之间存在直接的相互作用;用免疫共沉淀和荧光共定位证明在体内PCAF能够与PML发生直接的相互作用而定位于ND10。这些结果为进一步深入研究PCAF的生物学功能和作用模式奠定了基础。 相似文献
5.
The prioritization of candidate disease-causing genes is a fundamental challenge in the post-genomic era. Current state of the art methods exploit a protein-protein interaction (PPI) network for this task. They are based on the observation that genes causing phenotypically-similar diseases tend to lie close to one another in a PPI network. However, to date, these methods have used a static picture of human PPIs, while diseases impact specific tissues in which the PPI networks may be dramatically different. Here, for the first time, we perform a large-scale assessment of the contribution of tissue-specific information to gene prioritization. By integrating tissue-specific gene expression data with PPI information, we construct tissue-specific PPI networks for 60 tissues and investigate their prioritization power. We find that tissue-specific PPI networks considerably improve the prioritization results compared to those obtained using a generic PPI network. Furthermore, they allow predicting novel disease-tissue associations, pointing to sub-clinical tissue effects that may escape early detection. 相似文献
6.
《四川动物》2013,(4)
利用生物信息学方法,通过NCBI和其他生物学数据库及DNAstar、Clustal X等生物信息学软件对小鼠11种去乙酰化酶(histone deacetylase,HDAC)的基因结构、开放阅读框、GC含量、氨基酸序列、同源性及染色体定位等问题进行了分析。结果发现小鼠HDACs外显子从10~29个不等,开放阅读框长度从1044~3450bp不等,GC含量约为50%。序列比对分析后发现HDAC1和HDAC2蛋白质序列之间相似性达89.8%,其余HDACs蛋白质序列之间相似性相对较低,HDAC7和HDAC8之间仅为8.8%。系统发生分析表明小鼠11种HDACs也按照酵母种系发育中不同HDACs的结构聚类为Ⅰ、Ⅱa、Ⅱb和Ⅳ等4个类群,来源于基因复制。染色体定位分析发现除HDAC6和HDAC8位于X染色体外,其余均位于常染色体。研究结果为进一步研究小鼠HDACs转录调控的分子机制和蛋白质功能奠定基础。 相似文献
7.
MIKA TANAKA SATOSHI TANAKA HIROHITO MIURA HIROAKI YAMAMOTO HIDEAKI KIKUCHI TAKUJI TAKEUCHI 《Pigment cell & melanoma research》1992,5(5):304-311
In vertebrates, melanin production is restricted to pigment cells. This cell type-specific melanogenesis is considered to involve cell type-specific expression of the tyrosinase gene. Recently, there have been several reports that sequences in the 5’ flanking region of the mouse tyrosinase gene are responsible for cell type-specific expression of the transgene in mice. As the first step in the study of the evolution of the regulatory mechanisms for tyrosinase gene function in vertebrates, we constructed a fused gene, hg-Tyrs-J which includes a 1.0-kb 5’ flanking sequence of the human tyrosinase gene fused with mouse tyrosinase cDNA. By introducing the fused gene into fertilized eggs of albino mice, we obtained two mice that exhibited pigmentation in the skin and eyes and established a transgenic line from one of them. Further analyses revealed that the transgene was expressed cell type-specifically in these transgenic mice. We conclude, therefore, that the 1.0 kb 5’ upstream region of the human tyrosinase gene contains conserved cis-elements essential for cell type-specific expression of the tyrosinase genes in mice and humans. Results of our study may provide a clue to elucidate the evolutionary process of regulatory mechanisms of the tyrosinase gene. 相似文献
8.
9.
Ermishev V. Yu. Naroditsky B. S. Khavkin E. E. 《Russian Journal of Plant Physiology》2002,49(5):665-670
Direct amplification of genomic DNA from four wheat species produced DNA fragments corresponding to the K-box sequence of the apetala1/squamosa class of the MADS-box genes. Exons 3 to 5 were highly conserved within the tribe Triticeae and very similar to the apetala1 genes of darnel ryegrass, rice, and maize. Most of the variations observed were due to synonymous substitutions: the deduced amino acid sequences were 89–99% similar within the Triticeae and 88–94% within the entire family Poaceae. Introns 3 and 4 of the apetala1 class genes were similar in wheat and rye and differed from those in other MADS-box genes presently known. 相似文献
10.
11.
Itsasne Bustillo-Zabalbeitia Sylvie Montessuit Etienne Raemy Gorka Basa?ez Oihana Terrones Jean-Claude Martinou 《PloS one》2014,9(7)
Dynamin-Related Protein 1 (Drp1), a large GTPase of the dynamin superfamily, is required for mitochondrial fission in healthy and apoptotic cells. Drp1 activation is a complex process that involves translocation from the cytosol to the mitochondrial outer membrane (MOM) and assembly into rings/spirals at the MOM, leading to membrane constriction/division. Similar to dynamins, Drp1 contains GTPase (G), bundle signaling element (BSE) and stalk domains. However, instead of the lipid–interacting Pleckstrin Homology (PH) domain present in the dynamins, Drp1 contains the so-called B insert or variable domain that has been suggested to play an important role in Drp1 regulation. Different proteins have been implicated in Drp1 recruitment to the MOM, although how MOM-localized Drp1 acquires its fully functional status remains poorly understood. We found that Drp1 can interact with pure lipid bilayers enriched in the mitochondrion-specific phospholipid cardiolipin (CL). Building on our previous study, we now explore the specificity and functional consequences of this interaction. We show that a four lysine module located within the B insert of Drp1 interacts preferentially with CL over other anionic lipids. This interaction dramatically enhances Drp1 oligomerization and assembly-stimulated GTP hydrolysis. Our results add significantly to a growing body of evidence indicating that CL is an important regulator of many essential mitochondrial functions. 相似文献
12.
13.
14.
15.
16.
Charles L. Zhao Seyed Hanif Mahboobi Ruhollah Moussavi-Baygi Mohammad R. K. Mofrad 《PloS one》2014,9(4)
While much has been devoted to the study of transport mechanisms through the nuclear pore complex (NPC), the specifics of interactions and binding between export transport receptors and the NPC periphery have remained elusive. Recent work has demonstrated a binding interaction between the exportin CRM1 and the unstructured carboxylic tail of Tpr, on the nuclear basket. Strong evidence suggests that this interaction is vital to the functions of CRM1. Using molecular dynamics simulations and a newly refined method for determining binding regions, we have identified nine candidate binding sites on CRM1 for C-Tpr. These include two adjacent to RanGTP – from which one is blocked in the absence of RanGTP – and three next to the binding region of the cargo Snurportin. We report two additional interaction sites between C-Tpr and Snurportin, suggesting a possible role for Tpr import into the nucleus. Using bioinformatics tools we have conducted conservation analysis and functional residue prediction investigations to identify which parts of the obtained binding sites are inherently more important and should be highlighted. Also, a novel measure based on the ratio of available solvent accessible surface (RASAS) is proposed for monitoring the ligand/receptor binding process. 相似文献
17.
Whereas the genomes of many organisms contain several nonallelic types of linker histone genes, one single histone H1 type
is known in Drosophila melanogaster that occurs in about 100 copies per genome. Amplification of H1 gene sequences from genomic DNA of wild type strains of D. melanogaster from Oregon, Australia, and central Africa yielded numerous clones that all exhibited restriction patterns identical to each
other and to those of the known H1 gene sequence. Nucleotide sequences encoding the evolutionarily variable domains of H1
were determined in two gene copies of strain Niamey from central Africa and were found to be identical to the known H1 sequence.
Most likely therefore, the translated sequences of D. melanogaster H1 genes do not exhibit intragenomic or intergenomic variations.
In contrast, three different histone H1 genes were isolated from D. virilis and found to encode proteins that differ remarkably from each other and from the H1 of D. melanogaster and D. hydei. About 40 copies of H1 genes are organized in the D. virilis genome with copies of core histone genes in gene quintets that were found to be located in band 25F of chromosome 2. Another
type of histone gene cluster is present in about 15 copies per genome and contains a variable intergenic sequence instead
of an H1 gene. The H1 heterogeneity in D. virilis may have arisen from higher recombination rates than occur near the H1 locus in D. melanogaster and might provide a basis for formation of different chromatin subtypes.
Received: 2 March 2000 / Accepted: 1 June 2000 相似文献
18.
19.