首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface topography of a 190-residue COOH-terminal colicin E1 channel peptide (NH2-Met 333-Ile 522-COOH) bound to uniformly sized 0.2-micron liposomes was probed by accessibility of the peptide to proteases in order (1) to determine whether the channel structure contains trans-membrane segments in addition to the four alpha-helices previously identified and (2) to discriminate between different topographical possibilities for the surface-bound state. An unfolded surface-bound state is indicated by increased trypsin susceptibility of the bound peptide relative to that of the peptide in aqueous solution. The peptide is bound tightly to the membrane surface with Kd < 10(-7) M. The NH2-terminal 50 residues of the membrane-bound peptide are unbound or loosely bound as indicated by their accessibility to proteases, in contrast with the COOH-terminal 140 residues, which are almost protease inaccessible. The general protease accessibility of the NH2-terminal segment Ala 336-Lys 382 excludes any model for the closed channel state that would include trans-membrane helices on the NH2-terminal side of Lys 382. Lys 381-Lys 382 is a major site for protease cleavage of the surface-bound channel peptide. A site for proteinase K cleavage just upstream of the amphiphilic gating hairpin (K420-K461) implies the presence of a surface-exposed segment in this region. These protease accessibility data indicate that it is unlikely that there are any alpha-helices on the NH2-terminal side of the gating hairpin K420-K461 that are inserted into the membrane in the absence of a membrane potential. A model for the topography of an unfolded monomeric surface-bound intermediate of the colicin channel domain, including a trans-membrane hydrophobic helical hairpin and two or three long surface-bound helices, is proposed.  相似文献   

2.
The three-dimensional structure of the channel-forming trans-membrane domain of virus protein "u" (Vpu) of HIV-1 was determined by NMR spectroscopy in micelle and bilayer samples. Vpu(2-30+) is a 36-residue polypeptide that consists of residues 2-30 from the N terminus of Vpu and a six-residue "solubility tag" at its C terminus that facilitates the isolation, purification, and sample preparation of this highly hydrophobic minimal channel-forming domain. Nearly all of the resonances in the two-dimensional 1H/15N HSQC spectrum of uniformly 15N labeled Vpu(2-30+) in micelles are superimposable on those from the corresponding residues in the spectrum of full-length Vpu, which indicates that the structure of the trans-membrane domain is not strongly affected by the presence of the cytoplasmic domain at its C terminus. The two-dimensional 1H/15N PISEMA spectrum of Vpu(2-30+) in lipid bilayers aligned between glass plates has been fully resolved and assigned. The "wheel-like" pattern of resonances in the spectrum is characteristic of a slightly tilted membrane-spanning helix. Experiments were also performed on weakly aligned micelle samples to measure residual dipolar couplings and chemical shift anisotropies. The analysis of the PISA wheels and Dipolar Waves obtained from both weakly and completely aligned samples show that Vpu(2-30+) has a trans-membrane alpha-helix spanning residues 8-25 with an average tilt of 13 degrees. The helix is kinked slightly at Ile17, which results in tilts of 12 degrees for residues 8-16 and 15 degrees for residues 17-25. A structural fit to the experimental solid-state NMR data results in a three-dimensional structure with precision equivalent to an RMSD of 0.4 A. Vpu(2-30+) exists mainly as an oligomer on PFO-PAGE and forms ion-channels, a most frequent conductance of 96(+/- 6) pS in lipid bilayers. The structural features of the trans-membrane domain are determinants of the ion-channel activity that may be associated with the protein's role in facilitating the budding of new virus particles from infected cells.  相似文献   

3.
Vpu is an 81-residue accessory protein of HIV-1. Because it is a membrane protein, it presents substantial technical challenges for the characterization of its structure and function, which are of considerable interest because the protein enhances the release of new virus particles from cells infected with HIV-1 and induces the intracellular degradation of the CD4 receptor protein. The Vpu-mediated enhancement of the virus release rate from HIV-1-infected cells is correlated with the expression of an ion channel activity associated with the transmembrane hydrophobic helical domain. Vpu-induced CD4 degradation and, to a lesser extent, enhancement of particle release are both dependent on the phosphorylation of two highly conserved serine residues in the cytoplasmic domain of Vpu. To define the minimal folding units of Vpu and to identify their activities, we prepared three truncated forms of Vpu and compared their structural and functional properties to those of full-length Vpu (residues 2-81). Vpu(2-37) encompasses the N-terminal transmembrane alpha-helix; Vpu(2-51) spans the N-terminal transmembrane helix and the first cytoplasmic alpha-helix; Vpu(28-81) includes the entire cytoplasmic domain containing the two C-terminal amphipathic alpha-helices without the transmembrane helix. Uniformly isotopically labeled samples of the polypeptides derived from Vpu were prepared by expression of fusion proteins in E. coli and were studied in the model membrane environments of lipid micelles by solution NMR spectroscopy and oriented lipid bilayers by solid-state NMR spectroscopy. The assignment of backbone resonances enabled the secondary structure of the constructs corresponding to the transmembrane and the cytoplasmic domains of Vpu to be defined in micelle samples by solution NMR spectroscopy. Solid-state NMR spectra of the polypeptides in oriented lipid bilayers demonstrated that the topology of the domains is retained in the truncated polypeptides. The biological activities of the constructs of Vpu were evaluated. The ion channel activity is confined to the transmembrane alpha-helix. The C-terminal alpha-helices modulate or promote the oligomerization of Vpu in the membrane and stabilize the conductive state of the channel, in addition to their involvement in CD4 degradation.  相似文献   

4.
The paucity of crystallographic data on the structure of intrinsic membrane proteins necessitates the development of additional techniques to probe their structures. The colicin E1 ion channel domain contains one prominent hydrophobic region near its COOH terminus that has been proposed to be an anchor for the assembly of the channel. Saturation site-directed mutagenesis of the hydrophobic anchor region of the colicin E1 ion channel was used to probe whether it spanned the bilayer once or twice. A nonpolar amino acid was replaced by a charged residue in 29 mutations made at 26 positions in the channel domain. Substitution of the charged amino acid at all positions except those in the center of the hydrophobic region and the periphery of the hydrophobic region caused a large decrease in the cytotoxicity of the purified mutant colicin E1 protein. This result implies that the hydrophobic domain spans the membrane bilayer twice in a helical hairpin loop, with the center of this domain residing in an aqueous or polar phase. The lengths of the trans-membrane helices appear to be approximately 18 and 16 residues. The absence of significant changes in ion selectivity in five of nine mutants indicated that these mutations did not cause a large change in the channel structure. The ion selectivity changes in four mutants and those previously documented for the flanking Lys residues imply that the hydrophobic hairpin is part of the channel lumen. Water may "abhor" the hydrophobic side of the channel, explaining the small effects of residue charge changes on ion selectivity.  相似文献   

5.
The human immunodeficiency virus (HIV) and influenza virus fusion peptides are approximately 20-residue sequences which catalyze the fusion of viral and host cell membranes. The orientations of these peptides in lipid bilayers have been probed with 15N solid-state nuclear magnetic resonance (NMR) spectroscopy of samples containing membranes oriented between stacked glass plates. Each of the peptides adopts at least two distinct conformations in membranes (predominantly helical or beta strand) and the conformational distribution is determined in part by the membrane headgroup and cholesterol composition. In the helical conformation, the 15N spectra suggest that the influenza peptide adopts an orientation approximately parallel to the membrane surface while the HIV peptide adopts an orientation closer to the membrane bilayer normal. For the beta strand conformation, there appears to be a broader peptide orientational distribution. Overall, the data suggest that the solid-state NMR experiments can test models which correlate peptide orientation with their fusogenic function.  相似文献   

6.
The X-ray structures of the channel-forming colicins Ia and N, and endoribonucleolytic colicin E3, as well as of the channel domains of colicins A and E1, and spectroscopic and calorimetric data for intact colicin E1, are discussed in the context of the mechanisms and pathways by which colicins are imported into cells. The extensive helical coiled-coil in the R domain and internal hydrophobic hairpin in the C domain are important features relevant to colicin import and channel formation. The concept of outer membrane translocation mediated by two receptors, one mainly used for initial binding and second for translocation, such as BtuB and TolC, respectively, is discussed. Helix elongation and conformational flexibility are prerequisites for import of soluble toxin-like proteins into membranes. Helix elongation contradicts suggestions that the colicin import involves a molten globule intermediate. The nature of the open-channel structure is discussed.  相似文献   

7.
Channel-forming colicins are bactericidal proteins that spontaneously insert into hydrophobic lipid bilayers. We have used magic-angle spinning solid-state nuclear magnetic resonance spectroscopy to examine the conformational differences between the water-soluble and the membrane-bound states of colicin Ia channel domain, and to study the effect of bound colicin on lipid bilayer structure and dynamics. We detected (13)C and (15)N isotropic chemical shift differences between the two forms of the protein, which indicate structural changes of the protein due to membrane binding. The Val C(alpha) signal, unambiguously assigned by double-quantum experiments, gave a 0.6 ppm downfield shift in the isotropic position and a 4 ppm reduction in the anisotropic chemical shift span after membrane binding. These suggest that the alpha-helices in the membrane-bound colicin adopt more ideal helical torsion angles as they spread onto the membrane. Colicin binding significantly reduced the lipid chain order, as manifested by (2)H quadrupolar couplings. These results are consistent with the model that colicin Ia channel domain forms an extended helical array at the membrane-water interface upon membrane binding.  相似文献   

8.
The channel activity of colicin E1 was studied in planar lipid bilayers and liposomes. Colicin E1 pore-forming activity was found to depend on the curvature of the lipid bilayer, as judged by the effect on channel activity of curvature-modulating agents. In particular, the colicin-induced trans-membrane current was augmented by lysophosphatidylcholine and reduced by oleic acid, agents promoting positive and negative membrane curvature, respectively. The data obtained imply direct involvement of lipids in the formation of colicin E1-induced pore walls. It is inferred that the toroidal pore model previously validated for small antimicrobial peptides is applicable to colicin E1, a large protein that contains ten alpha-helices in its pore-forming domain.  相似文献   

9.
The three-dimensional backbone structure of the transmembrane domain of Vpu from HIV-1 was determined by solid-state NMR spectroscopy in two magnetically-aligned phospholipid bilayer environments (bicelles) that differed in their hydrophobic thickness. Isotopically labeled samples of Vpu(2-30+), a 36-residue polypeptide containing residues 2-30 from the N-terminus of Vpu, were incorporated into large (q = 3.2 or 3.0) phospholipid bicelles composed of long-chain ether-linked lipids (14-O-PC or 16-O-PC) and short-chain lipids (6-O-PC). The protein-containing bicelles are aligned in the static magnetic field of the NMR spectrometer. Wheel-like patterns of resonances characteristic of tilted transmembrane helices were observed in two-dimensional (1)H/(15)N PISEMA spectra of uniformly (15)N-labeled Vpu(2-30+) obtained on bicelle samples with their bilayer normals aligned perpendicular or parallel to the direction of the magnetic field. The NMR experiments were performed at a (1)H resonance frequency of 900 MHz, and this resulted in improved data compared to lower-resonance frequencies. Analysis of the polarity-index slant-angle wheels and dipolar waves demonstrates the presence of a transmembrane alpha-helix spanning residues 8-25 in both 14-O-PC and 16-O-PC bicelles, which is consistent with results obtained previously in micelles by solution NMR and mechanically aligned lipid bilayers by solid-state NMR. The three-dimensional backbone structures were obtained by structural fitting to the orientation-dependent (15)N chemical shift and (1)H-(15)N dipolar coupling frequencies. Tilt angles of 30 degrees and 21 degrees are observed in 14-O-PC and 16-O-PC bicelles, respectively, which are consistent with the values previously determined for the same polypeptide in mechanically-aligned DMPC and DOPC bilayers. The difference in tilt angle in C14 and C16 bilayer environments is also consistent with previous results indicating that the transmembrane helix of Vpu responds to hydrophobic mismatch by changing its tilt angle. The kink found in the middle of the helix in the longer-chain C18 bilayers aligned on glass plates was not found in either of these shorter-chain (C14 or C16) bilayers.  相似文献   

10.
The S4 segments of voltage-gated sodium channels are important parts of the voltage-sensing elements of these proteins. Furthermore, the addition of the isolated S4 polypeptide to planar lipid bilayers results in stepwise increases of ion conductivity. In order to gain insight into the mechanisms of pore formation by amphipathic peptides, the structure and orientation of the S4 segment of the first internal repeat of the rat brain II sodium channel was investigated in the presence of DPC micelles by multidimensional solution NMR spectroscopy and solid-state NMR spectroscopy on oriented phospholipid bilayers. Both the anisotropic chemical shift observed by proton-decoupled (15)N solid-state NMR spectroscopy and the attenuating effects of DOXYL-stearates on TOCSY crosspeak intensities of micelle-associated S4 indicate that the central alpha-helical portion of this peptide is oriented approximately parallel to the membrane surface. Simulated annealing and molecular dynamics calculations of the peptide in a biphasic tetrachloromethane-water environment indicate that the peptide alpha-helix extends over approximately 12 residues. A less regular structure further toward the C-terminus allows for the hydrophobic residues of this part of the peptide to be positioned in the tetrachloromethane environment. The implications for possible pore-forming mechanisms are discussed.  相似文献   

11.
Several complementary NMR approaches were used to study the interaction of mastoparan, a 14-residue peptide toxin from wasp venom, with lipid membranes. First, the 3D structure of mastoparan was determined using 1H-NMR spectroscopy in perdeuterated (SDS-d25) micelles. NOESY experiments and distance geometry calculations yielded a straight amphiphilic alpha-helix with high-order parameters, and the chemical shifts of the amide protons showed a characteristic periodicity of 3-4 residues. Secondly, solid-state 2H-NMR spectoscopy was used to describe the binding of mastoparan to lipid bilayers, composed of headgroup-deuterated dimyristoylglycerophosphocholine (DMPC-d4) and dimyristoylphosphatidylglycerol (DMPG). By correlating the deuterium quadrupole splittings of the alpha-segments and beta-segments, it was possible to differentiate the electrostatically induced structural response of the choline headgroup from dynamic effects induced by the peptide. A partial phase separation was observed, leading to a DMPG-rich phase and a DMPG-depleted phase, each containing some mastoparan. Finally, the insertion and orientation of a specifically 15N-labeled mastoparan (at position Ala10) in the bilayer environment was investigated by solid-state 15N-NMR spectroscopy, using macroscopically oriented samples. Two distinct orientational states were observed for the mastoparan helix, namely an in-plane and a trans-membrane alignment. The two populations of 90% in-plane and 10% trans-membrane helices are characterized by a mosaic spread of +/- 30 degrees and +/- 10 degrees, respectively. The biological activity of mastoparan is discussed in terms of a pore-forming model, as the peptide is known to be able to induce nonlamellar phases and facilitate a flip-flop between the monolayers.  相似文献   

12.
Bechinger B 《FEBS letters》2001,504(3):161-165
Helical peptides reconstituted into oriented phospholipid bilayers were studied by proton-decoupled 15N solid-state NMR spectroscopy. Whereas hydrophobic channel peptides, such as the N-terminal region of Vpu of HIV-1, adopt transmembrane orientations, amphipathic peptide antibiotics are oriented parallel to the bilayer surface. The interaction contributions that determine the alignment of helical peptides in lipid membranes were analysed using model sequences, and peptides that change their topology in a pH-dependent manner have been designed. The energy contributions of histidines, lysines, leucines and alanines as well as the alignment of peptides and phospholipids under conditions of hydrophobic mismatch have been investigated in considerable detail.  相似文献   

13.
The secondary structure and membrane-associated conformation of a synthetic peptide corresponding to the putative membrane-binding C-terminal 38 residues of the bovine milk component PP3 was determined using 1H NMR in methanol, CD in methanol and SDS micelles, and 15N solid-state NMR in planar phospholipid bilayers. The solution NMR and CD spectra reveal that the PP3 peptide in methanol and SDS predominantly adopts an alpha-helical conformation extending over its entire length with a potential bend around residue 19. 15N solid-state NMR of two PP3 peptides 15N-labelled at the Gly7 and Ala32 positions, respectively, and dissolved in dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol phospholipid bilayers shows that the peptide is associated to the membrane surface with the amphipathic helix axis oriented parallel to the bilayer surface.  相似文献   

14.
Structure and dynamics of the colicin E1 channel   总被引:13,自引:0,他引:13  
The toxin-like and bactericidal colicin E1 molecule is of interest for problems of toxin action, polypeptide translocation across membranes, voltage-gated channels, and receptor function. Colicin E1 binds to a receptor in the outer membrane and is translocated across the cell envelope to the inner membrane. Import of the colicin channel-forming domain into the inner membrane involves a translocation-competent intermediate state and a membrane potential-dependent movement of one third to one half of the channel peptide into the membrane bilayer. The voltage-gated channel has a conductance sufficiently large to depolarize the Escherichia coli cytoplasmic membrane. Amino acid residues that affect the channel ion selectivity have been identified by site-directed mutagenesis. The colicin E1 channel is one of a few membrane proteins whose secondary structures in the membrane, predominantly alpha-helix, have been determined by physico-chemical techniques. Hypothesis for the identity of the trans-membrane helices, and the mechanism of binding to the membrane, are influenced by the solved crystal structure of the soluble colicin A channel peptide. The protective action of immunity protein is a unique aspect of the colicin problem, and information has been obtained, by genetic techniques, about the probable membrane topography of the imm gene product.  相似文献   

15.
The conformation of the 20-residue antibiotic ionophore alamethicin in macroscopically oriented phospholipid bilayers has been studied using (15)N solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with molecular modeling and molecular dynamics simulations. Differently (15)N-labeled variants of alamethicin and an analog with three of the alpha-amino-isobutyric acid residues replaced by alanines have been investigated to establish experimental structural constraints and determine the orientation of alamethicin in hydrated phospholipid (dimyristoylphosphatidylcholine) bilayers and to investigate the potential for a major kink in the region of the central Pro(14) residue. From the anisotropic (15)N chemical shifts and (1)H-(15)N dipolar couplings determined for alamethicin with (15)N-labeling on the Ala(6), Val(9), and Val(15) residues and incorporated into phospholipid bilayer with a peptide:lipid molar ratio of 1:8, we deduce that alamethicin has a largely linear alpha-helical structure spanning the membrane with the molecular axis tilted by 10-20 degrees relative to the bilayer normal. In particular, we find compatibility with a straight alpha-helix tilted by 17 degrees and a slightly kinked molecular dynamics structure tilted by 11 degrees relative to the bilayer normal. In contrast, the structural constraints derived by solid-state NMR appear not to be compatible with any of several model structures crossing the membrane with vanishing tilt angle or the earlier reported x-ray diffraction structure (Fox and Richards, Nature. 300:325-330, 1982). The solid-state NMR-compatible structures may support the formation of a left-handed and parallel multimeric ion channel.  相似文献   

16.
Channel-forming colicins are bactericidal proteins that spontaneously insert into hydrophobic lipid bilayers. We have used magic-angle spinning solid-state nuclear magnetic resonance spectroscopy to examine the conformational differences between the water-soluble and the membrane-bound states of colicin Ia channel domain, and to study the effect of bound colicin on lipid bilayer structure and dynamics. We detected 13C and 15N isotropic chemical shift differences between the two forms of the protein, which indicate structural changes of the protein due to membrane binding. The Val Cα signal, unambiguously assigned by double-quantum experiments, gave a 0.6 ppm downfield shift in the isotropic position and a 4 ppm reduction in the anisotropic chemical shift span after membrane binding. These suggest that the α-helices in the membrane-bound colicin adopt more ideal helical torsion angles as they spread onto the membrane. Colicin binding significantly reduced the lipid chain order, as manifested by 2H quadrupolar couplings. These results are consistent with the model that colicin Ia channel domain forms an extended helical array at the membrane-water interface upon membrane binding.  相似文献   

17.
Calreticulin (CRT) is an abundant molecular chaperone of the endoplasmic reticulum. Its central, proline-rich P-domain, comprising residues 189-288, contains three copies of each of two repeat sequences (types 1 and 2), which are arranged in a characteristic '111222' pattern. Here we show that the three-dimensional structure of CRT(189-288) contains a single hairpin fold formed by the entire polypeptide chain. The loop at the bottom of the hairpin consists of residues 227-247, and is closed by an anti-parallel beta-sheet of residues 224-226 and 248-250. Two additional beta-sheets contain residues 207-209 and 262-264, and 190-192 and 276-278. The 17-residue spacing of the beta-strands in the N-terminal part of the hairpin and the 14-residue spacing in the C-terminal part reflect the length of the type 1 and type 2 sequence repeats. As a consequence of this topology the peptide segments separating the beta-strands in the N-terminal part of the hairpin are likely to form bulges to accommodate the extra residues. These results are based on nearly complete sequence-specific NMR assignments for CRT(189-288), which were obtained using standard NMR techniques with the (13)C/(15)N-labeled protein, and collection of nuclear Overhauser enhancement upper distance constraints.  相似文献   

18.
The proapoptotic Bcl-2 family protein Bid is cleaved by caspase-8 to release the C-terminal fragment tBid, which translocates to the outer mitochondrial membrane and induces massive cytochrome c release and cell death. In this study, we have characterized the conformation of tBid in lipid membrane environments, using NMR and CD spectroscopy with lipid micelle and lipid bilayer samples. In micelles, tBid adopts a unique helical conformation, and the solution NMR (1)H/(15)N HSQC spectra have a single well resolved resonance for each of the protein amide sites. In lipid bilayers, tBid associates with the membrane with its helices parallel to the membrane surface and without trans-membrane helix insertion, and the solid-state NMR (1)H/(15)N polarization inversion with spin exchange at the magic angle spectrum has all of the amide resonances centered at (15)N chemical shift (70-90 ppm) and (1)H-(15)N dipolar coupling (0-5 kHz) frequencies associated with NH bonds parallel to the bilayer surface, with no intensity at frequencies associated with NH bonds in trans-membrane helices. Thus, the cytotoxic activity of tBid at mitochondria may be similar to that observed for antibiotic polypeptides, which bind to the surface of bacterial membranes as amphipathic helices and destabilize the bilayer structure, promoting the leakage of cell contents.  相似文献   

19.
The X-ray structures of the channel-forming colicins Ia and N, and endoribonucleolytic colicin E3, as well as of the channel domains of colicins A and E1, and spectroscopic and calorimetric data for intact colicin E1, are discussed in the context of the mechanisms and pathways by which colicins are imported into cells. The extensive helical coiled-coil in the R domain and internal hydrophobic hairpin in the C domain are important features relevant to colicin import and channel formation. The concept of outer membrane translocation mediated by two receptors, one mainly used for initial binding and second for translocation, such as BtuB and TolC, respectively, is discussed. Helix elongation and conformational flexibility are prerequisites for import of soluble toxin-like proteins into membranes. Helix elongation contradicts suggestions that the colicin import involves a molten globule intermediate. The nature of the open-channel structure is discussed.  相似文献   

20.
Knowledge of the structure, dynamics and interactions of polypeptides when associated with phospholipid bilayers is key to understanding the functional mechanisms of channels, antibiotics, signal- or translocation peptides. Solid-state NMR spectroscopy on samples uniaxially aligned relative to the magnetic field direction offers means to determine the alignment of polypeptide bonds and domains relative to the bilayer normal. Using this approach the 15N chemical shift of amide bonds provides a direct indicator of the approximate helical tilt, whereas the 2H solid-state NMR spectra acquired from peptides labelled with 3,3,3-2H3-alanines contain valuable complimentary information for a more accurate analysis of tilt and rotation pitch angles. The deuterium NMR line shapes are highly sensitive to small variations in the alignment of the Cα–Cβ bond relative to the magnetic field direction and, therefore, also the orientational distribution of helices relative to the membrane normal. When the oriented membrane samples are investigated with their normal perpendicular to the magnetic field direction, the rate of rotational diffusion can be determined in a semi-quantitative manner and thereby the aggregation state of the peptides can be analysed. Here the deuterium NMR approach is first introduced showing results from model amphipathic helices. Thereafter investigations of the viral channel peptides Vpu1–27 and Influenza A M222–46 are shown. Whereas the 15N chemical shift data confirm the transmembrane helix alignments of these hydrophobic sequences, the deuterium spectra indicate considerable mosaic spread in the helix orientations. At least two peptide populations with differing rotational correlation times are apparent in the deuterium spectra of the viral channels suggesting an equilibrium between monomeric peptides and oligomeric channel configurations under conditions where solid-state NMR structural studies of these peptides have previously been performed. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号