首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A leaky guaB mutant of Salmonella typhimurium LT-2 was obtained during a selection for mutants resistant to a combination of the two pyrimidine analogs, 5-fluorouracil and 5-fluorouridine. In the absence of exogenous guanine compounds, the growth rate of this mutant is limited by the endogenous supply of guanine nucleotides due to a defective inosine 5'-monophosphate dehydrogenase. Under these conditions the guanosine 5'-triphosphate pool is about 20% of normal, the cytidine 5'-triphosphate pool is reduced to below 60%, and the uridine 5'-triphosphate pool is slightly elevated. Simultaneously, levels of the pyrimidine biosynthetic enzymes are abnormal: aspartate transcarbamylase, orotate phosphoribosyltransferase, and orotidylic acid decarboxylase levels are increased 4-, 11-, and 3-fold, respectively. Levels of dihydroorotase and dihydroorotate dehydrogenase are decreased to 10 and 20%, respectively. The pyrimidine metabolism of the guaB mutant is restored completely by addition of guanine (or xanthine) to the growth medium. The data indicate purine nucleotide involvement in the regulation of expression of the pyr genes of S. typhimurium.  相似文献   

2.
3.
4.
5.
6.
7.
Rifampicin-resistant mutants of Salmonella typhimurium were isolated and tested for pleiotropic defects in the regulation of pyr gene expression. Seven per cent of all the Rifr mutants were inhibited in growth by addition of uracil (uracil-sensitive). The uracil-sensitive phenotype ( UraS ) was reversed by arginine or citrulline, but not by ornithine, and it was suppressed by mutations in either argR or pyrH , which causes increased expression of pyrA . It was shown that the basal levels of carbamoylphosphate synthase (the pyrA gene product) was reduced to approximately 60% in the mutants, and that addition of arginine and/or uracil to the growth medium caused hyperrepression of pyrA expression. The expression of other genes of the arginine and pyrimidine biosynthetic pathways was not affected significantly in the mutants. The mutations were located in the rpoB gene coding for the beta-subunit of RNA polymerase, suggesting a regulatory function of RNA polymerase in the control of pyrA expression.  相似文献   

8.
9.
A number of mutant Chinese hamster ovary (CHO) cell lines resistant to the cytotoxic action of alpha-amanitin have been isolated. The alpha-amanitin sensitivity of the different mutant cell lines varied widely, but correlated well with the alpha-amanitin sensitivity of the RNA polymerase II activity in each of these mutant cell lines. In comparison with the RNA polymerase II of wild-type cells, three mutants, Ama39, Ama6, and Amal, required respectively 2- to 3-fold, 8- to 10-fold, and about 800-fold higher concentrations of alpha-amanitin for inhibition of their polymerase II activity. Determination of the equilibrium dissociation constants (KD) for complexes between 0-[3H]methyl-demethyl-gamma-amanitin and RNA polymearse II indicated that differences in alpha-amanitin sensitivity were reflected in differences in the ability of the enzymes to bind amanitin. Hybrids formed by fusion of mutants with cells of wild-type sensitivity contained both mutant and wild-type polymerase II activities. Thus, each of the different alpha-amanitin resistance mutations was expressed co-dominantly. A test for complementation between two of these mutations by measurement of both the alpha-amanitin sensitivity and the [3H]amanitin binding by RNA polymerase II in Ama6 X Amal hybrid cells did not reveal any wild-type RNA polymerase II activity. These data provide evidence that the mutation to alpha-amanitin resistance involves structural changes in the gene coding for the alpha-amanitin binding subunit of RNA polymerase II. These changes appear to account for the alpha-amanitin-resistant phenotypes of these mutant cells.  相似文献   

10.
The ability of Salmonella enterica serovar Typhimurium to cause disease depends upon the co-ordinated expression of many genes located around the Salmonella chromosome. Specific pathogenicity loci, termed Salmonella pathogenicity islands, have been shown to be crucial for the invasion and survival of Salmonella within host cells. Salmonella pathogenicity island 1 (SPI-1) harbours the genes required for the stimulation of Salmonella uptake across the intestinal epithelia of the infected host. Regulation of SPI-1 genes is complex, as invasion gene expression responds to a number of different signals, presumably signals similar to those found within the environment of the intestinal tract. As a result of our continued studies of SPI-1 gene regulation, we have discovered that the nucleoid-binding protein Fis plays a pivotal role in the expression of HilA and InvF, two activators of SPI-1 genes. A S. typhimurium fis mutant demonstrates a two- to threefold reduction in hilA:Tn5lacZY and a 10-fold reduction in invF:Tn5lacZY expression, as well as a 50-fold decreased ability to invade HEp-2 tissue culture cells. This decreased expression of hilA and invF resulted in an altered secreted invasion protein profile in the fis mutant. Furthermore, the virulence of a S. typhimurium fis mutant is attenuated 100-fold when administered orally, but has wild-type virulence when administered intraperitoneally. Expression of hilA:Tn5lacZY and invF:Tn5lacZY in the fis mutant could be restored by introducing a plasmid containing the S. typhimurium fis gene or a plasmid containing hilD, a gene encoding an AraC-like regulator of Salmonella invasion genes.  相似文献   

11.
The differential rate of synthesis of five of the pyrimidine biosynthetic enzymes coded for by pyrB-F, and the endogenous concentrations of the individual pyrimidine nucleotides were determined in specially constructed mutants of Salmonella typhimurium. In the mutants employed the different pyrimidine nucleotide pools may be manipulated individually during exponential growth. The results obtained indicate the following. (i) The expression of pyrB, pyrE, and pyrF is controlled by a uridine nucleotide in a noncoordinate manner. (ii) The expression of pyrC and pyrD is regulated predominantly by a cytidine nucleotide. Under all conditions investigated, their expression seems to be coordinated, even though the genes are not contiguous on the chromosome. (iii) The low-molecular-weight effectors involved in controlling the expression of the pyr genes are neither uridine 5'-monophosphate nor cytidine 5'-monophosphate, but rather the corresponding di- or triphosphates.  相似文献   

12.
Localized mutagenes of Salmonella typhimurium followed by a [3H]uridine enrichment procedure yielded a temperature-sensitive strain with a mutation in the rpo region of the chromosome. Ribonucleic acid (RNA) polymerase (EC 2.7.7.6; nucleoside triphosphate: RNA nucleotidyltransferase) purified from this mutant was considerably less active at the nonpermissive temperature than wild-type enzyme. Furthermore, the enzyme from this mutant, unlike RNA polymerase of previously isolated temperature-sensitive mutants, was as thermostable as wild-type enzyme when preincubated at 50 degrees C. Subunit reconstitution experiments have shown that the temperature sensitivity is caused by an alteration in the beta' subunit of the enzyme.  相似文献   

13.
DNA polymerase III holoenzyme is a multiprotein complex responsible for the bulk of chromosomal replication in Escherichia coli and Salmonella typhimurium. The catalytic core of the holoenzyme is an alpha epsilon theta heterotrimer that incorporates both a polymerase subunit (alpha; dnaE) and a proofreading subunit (epsilon; dnaQ). The role of theta is unknown. Here, we describe a null mutation of holE, the gene for theta. A strain carrying this mutation was fully viable and displayed no mutant phenotype. In contrast, a dnaQ null mutant exhibited poor growth, chronic SOS induction, and an elevated spontaneous mutation rate, like dnaQ null mutants of S. typhimurium described previously. The poor growth was suppressible by a mutation affecting alpha which was identical to a suppressor mutation identified in S. typhimurium. A double mutant null for both holE and dnaQ was indistinguishable from the dnaQ single mutant. These results show that the theta subunit is dispensable in both dnaQ+ and mutant dnaQ backgrounds, and that the phenotype of epsilon mutants cannot be explained on the basis of interference with theta function.  相似文献   

14.
15.
16.
17.
18.
19.
An RNA polymerase mutant with reduced accuracy of chain elongation   总被引:11,自引:0,他引:11  
  相似文献   

20.
The synthetic C5a gene was initially found to be expressed poorly in Escherichia coli. We undertook studies to determine the reasons for poor expression and to increase expression. The work was focused on the role of the mRNA structure in C5a expression and stability of its product in E. coli. We present data on the effects of varying the sequence at the 5' end of mRNA as well as different ribosome-binding sites on expression. Evaluation of the stability of C5a showed rapid degradation of C5a in wild-type E. coli (half-life 3-5 min). Screening of several protease-deficient strains of E. coli showed that C5a was much more stable in an htpR strain carrying a mutation in the sigma subunit of RNA polymerase that is specific for heat shock promoters. The mutation is associated with a proteolytic deficiency. The half-life of C5a was increased to 20 min. By manipulating the expression vector, the regulatory region for the C5a gene, the host strain, growth conditions and methods for recovering the protein, C5a levels were increased 300-fold over previously reported amounts to about 3% of total cellular protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号