首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《BBA》2014,1837(2):270-276
Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells.  相似文献   

2.
Two forms of calpastatin, differing in their specificity for the homologous calpain isozymes I and II, have been separated from rat skeletal muscle extracts and purified to homogeneity. Calpastatin I, the first form to elute in chromatography on DE32, is more effective against calpain I, while calpastatin II is more effective as an inhibitor of calpain II. Based on their molecular mass (approximately 105 kDa) both calpastatin forms belong to the high molecular mass class found in muscles of other animal species (Murachi, T., 1989, Biochem. Int. 18, 263-294). For calpain I, which is active with low (mu-M) concentrations of Ca2+, maximum inhibition with either calpastatin form was observed over a wide range of Ca2+ concentrations. With calpain II, which requires high (mM) concentrations of Ca2+ for activity, maximum inhibition required Ca2+ concentrations above 1 mM. Both calpastatin forms were found to be highly sensitive to degradation by calpain II, but almost completely resistant to degradation by calpain I. Degradation of calpastatin by calpain II is competitively inhibited by the addition of a calpain substrate. Isovaleryl carnitine (IVC), an intermediate product of L-leucine catabolism, previously demonstrated to be a potent and specific activator of rat skeletal muscle calpain II (Pontremoli, S., Melloni, E., Viotti, P. L., Michetti, M., Di Lisa, F., and Siliprandi, N., 1990. Biochem. Biophys. Res. Commun. 167, 373-380) greatly enhances the rate of degradation of calpastatins by calpain II. IVC, which decreases the Ca2+ requirement for maximal calpain II activity, also decreases the concentration of Ca2+ required for digestion of the inhibitor. For calpain II, regulation by either calpastatins may occur only in the presence of high [Ca2+].  相似文献   

3.
4.
Activation of oxidative phosphorylation by physiological levels of calcium in mitochondria from rat skeletal muscle was analysed using top-down elasticity and regulation analysis. Oxidative phosphorylation was conceptually divided into three subsystems (substrate oxidation, proton leak and phosphorylation) connected by the membrane potential or the protonmotive force. Calcium directly activated the phosphorylation subsystem and (with sub-saturating 2-oxoglutarate) the substrate oxidation subsystem but had no effect on the proton leak kinetics. The response of mitochondria respiring on 2-oxoglutarate at two physiological concentrations of free calcium was quantified using control and regulation analysis. The partial integrated response coefficients showed that direct stimulation of substrate oxidation contributed 86% of the effect of calcium on state 3 oxygen consumption, and direct activation of the phosphorylation reactions caused 37% of the increase in phosphorylation flux. Calcium directly activated phosphorylation more strongly than substrate oxidation (78% compared to 45%) to achieve homeostasis of mitochondrial membrane potential during large increases in flux.  相似文献   

5.
Oscillatory behavior of glycolysis in cell-free extracts of skeletal muscle involves repeated bursts of phosphofructokinase activity and associated oscillations in the [ATP]/[ADP] ratio. Addition of citrate, a potent physiological inhibitor of phosphofructokinase, decreased the frequency of the oscillations and delayed the first burst of phosphofructokinase activity in a dose-dependent manner. Citrate decreased the trigger point [ATP]/[ADP] ratio at which bursts of phosphofructokinase activity were initiated but had a much smaller effect on the average [ATP]/[ADP] ratio and did not decrease the peak values of the ratio. When oscillations were prevented by addition of fructose-2,6-P2, the decrease in the [ATP]/[ADP] ratio caused by citrate in the steady state system was similar to the decrease in the trigger point [ATP]/[ADP] ratio in the oscillatory system. The decrease in the average [ATP]/[ADP] ratio was greater in the steady state system than in the oscillating system. These results demonstrate advantages of oscillatory behavior of glycolysis in the regulation of carbohydrate utilization and the maintenance of a high [ATP]/[ADP] ratio.  相似文献   

6.
Administration of beta-adrenergic agonists to domestic species can lead to skeletal muscle hypertrophy, probably by reducing the rate of myofibrillar protein breakdown. Myofibrillar breakdown is associated with the calcium-dependent proteinase system (calpains I,II and calpastatin) whose activity also changes during beta-agonist treatment. A number of growth trials using the agonists cimaterol and clenbuterol with cattle, sheep, chicken and rat are reported which suggest a general mechanism whereby beta-agonists reduce calpain I activity, but increase calpain II and calpastatin activity in skeletal muscle. Parallel changes in specific mRNAs indicate that changes in gene expression or stabilisation of mRNA could in part explain the changes in activity.  相似文献   

7.
Glucose transport is an essential physiological process that is characteristic of all eukaryotic cells, including skeletal muscle. In skeletal muscle, glucose transport is mediated by the GLUT-4 protein under conditions of increased carbohydrate utilization. The three major physiological stimuli of glucose transport in muscle are insulin, exercise/contraction, and hypoxia. Here, the role of reactive oxygen species (ROS) in modulating glucose transport in skeletal muscle is reviewed. Convincing evidence for ROS involvement in insulin- and hypoxia-mediated transport in muscle is lacking. Recent experiments, based on pharmacological and genetic approaches, support a role for ROS in contraction-mediated glucose transport. During contraction, endogenously produced ROS appear to mediate their effects on glucose transport via AMP-activated protein kinase.  相似文献   

8.
The rate of oxygen consumption of mitochondria from rat muscles at pH 7.4 is elevated by 1-lactate. The respiratory control ratio and the ADP/O-ratio are decreased under these conditions. Acidification to pH 6.5 in the absence of 1-lactate does not change the interpreted mitochondrial functions. The experimental data are discussed as a partial uncoupling effect of 1-lactate on the oxidative phosphorylation. Similar changes in those mitochondrial functions are found after short-time intensive swimming exercise of rats. These variations might be a reason for the sometimes described reduced aerobic performance after intensive work.  相似文献   

9.
10.
11.
Skeletal muscle insulin sensitivity improves with short-term reduction in calorie intake. The goal of this study was to evaluate changes in the abundance and phosphorylation of Akt1 and Akt2 as potential mechanisms for enhanced insulin action after 20 days of moderate calorie restriction [CR; 60% of ad libitum (AL) intake] in rat skeletal muscle. We also assessed changes in the abundance of SH2 domain-containing inositol phosphatase (SHIP2), a negative regulator of insulin signaling. Fisher 344 x Brown Norway rats were assigned to an AL control group or a CR treatment group for 20 days. Epitrochlearis muscles were dissected and incubated with or without insulin (500 microU/ml). Total Akt serine and threonine phosphorylation was significantly increased by 32 (P < 0.01) and 30% (P < 0.005) in insulin-stimulated muscles from CR vs. AL. Despite an increase in total Akt phosphorylation, there was no difference in Akt1 serine or Akt1 threonine phosphorylation between CR and AL insulin-treated muscles. However, there was a 30% decrease (P < 0.05) in Akt1 abundance for CR vs. AL. In contrast, there was no change in Akt2 protein abundance, and there was a 94% increase (P < 0.05) in Akt2 serine phosphorylation and an increase of 75% (P < 0.05) in Akt2 threonine phosphorylation of insulin-stimulated CR muscles compared with AL. There was no diet effect on SHIP2 abundance in skeletal muscle. These results suggest that, with brief CR, enhanced Akt2 phosphorylation may play a role in increasing insulin sensitivity in rat skeletal muscles.  相似文献   

12.
The classical concept of ATP-demand control of energy metabolism in skeletal muscle has to be modified on the basis of studies showing the influence of additional controlling parameters (reducing equivalent supply, oxygen availability, proton leak, diffusion restrictions and the creatine kinase system) and on the basis of applications of metabolic control analysis showing very clearly multistep control. This concept of multistep control allows to quantify the individual influence of any parameter on mitochondrial oxidative phosphorylation and is extremely helpful to analyze the metabolic consequences of enzyme deficiencies in skeletal muscle occurring in mitochondrial myopathies.  相似文献   

13.
Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (<1% of total protein phosphorylation), only a few tyrosine phosphorylation sites have been identified in mammalian skeletal muscle to date. Here, we used immunoprecipitation of phosphotyrosine peptides prior to HPLC-ESI-MS/MS analysis to improve the discovery of tyrosine phosphorylation in relatively small skeletal muscle biopsies from rats. This resulted in the identification of 87 distinctly localized tyrosine phosphorylation sites in 46 muscle proteins. Among them, 31 appear to be novel. The tyrosine phosphorylated proteins included major enzymes in the glycolytic pathway and glycogen metabolism, sarcomeric proteins, and proteins involved in Ca(2+) homeostasis and phosphocreatine resynthesis. Among proteins regulated by insulin, we found tyrosine phosphorylation sites in glycogen synthase, and two of its inhibitors, GSK-3α and DYRK1A. Moreover, tyrosine phosphorylation sites were identified in several MAP kinases and a protein tyrosine phosphatase, SHPTP2. These results provide the largest catalogue of mammalian skeletal muscle tyrosine phosphorylation sites to date and provide novel targets for the investigation of human skeletal muscle phosphoproteins in various disease states.  相似文献   

14.
Studies of the reversible binding of [3H]cortisol by rat gastrocnemius muscle cytoplasm in vitro reveal specific binding in the 27,000 times g supernatant fraction at 0 degrees. The [3H]cortisol-binding molecule had an apparant Kd value of 1.7 times 10-7 M and the number of binding sites was 0.99 pmol per mg of cytosol protein. Only a single class of [3H]cortisol-binding sites could be detected, whose protein nature was suggested by its susceptibility to nagarse. The [3H]cortisol-protein complex sedimented at similar to 4 S in a 5 to 20% sucrose gradient either in the presence or absence of 0.3 M KCl. Binding increased more than 2-fold in adrenalectomized rats and was markedly reduced in the muscle of rats pretreated with cortisol. In contrast to the binding of [3H]dexamethasone and [3H]triamcinolone acetonide to receptor proteins in muscle, no correlation was found between the ability of various steroids to complete wtth [3H]cortisol binding and their glucocorticoid potency: [3H]cortisol binding was inhibited by a 1000-fold higher concentration of unlabeled cortisol and progesterone but not by dexamethasone or triamcinolone acetonide. It is therefore suggested that the [3H]cortisol-binding reaction is not directly involved in the biological effects of all potent glucocorticoids in skeletal muscle. The [3H]cortisol-binding protein in muscle cytosol could not be unequivocally distinguished from rat plasma corticosteroid-binding globulin, because both had similar steroid specificity and temperature stability, were not markedly affected by--SH reagents, and displayed similar sedimentation properties.  相似文献   

15.
The specific radioactivity of [32P]-phosphate incorporated into muscle phosphofructokinase was in equilibrium with the specific radioactivity of the γ-phosphate group of ATP. The incorporation was independent of the presence of cycloheximide. The total content of covalently bound phosphate in phosphofructokinase was correlated with the functional state of the muscle from which the enzyme was purified. Muscle dissected post mortem led to phosphofructokinase containing less than 2 phosphate groups per tetramer. Muscle dissected in vivo gave phosphofructokinase with 4 phosphates per tetramer when kept at rest and 8 phosphates per tetramer when stimulated to contract.  相似文献   

16.
The effects of caffeine on the process of excitation-contraction coupling in amphibian skeletal muscle fibers were investigated using the confocal spot detection technique. This method permits to carefully discriminate between caffeine effects on the primary sources of Ca2+ release at the Z-lines where the triads are located and secondary actions on other potential Ca Release sources. Our results demonstrate that 0.5 mM caffeine potentiates and prolongs localized action-potential evoked Ca2+ transients recorded at the level of the Z-lines, but that 1mM only prolongs them. The effects at both doses are reversible. At the level of the M-line, localized Ca2+ transients displayed more variability in the presence of 1 mM caffeine than in control conditions. At this dose of caffeine, extra-junctional sources of Ca2+ release also were observed occasionally.  相似文献   

17.
The molecular mechanism of insulin resistance induced by high-fructose feeding is not fully understood. The present study investigated the role of downstream signaling molecules of phosphatidylinositol 3-kinase (PI3K) in the insulin-stimulated skeletal muscle of high-fructose-fed rats. Rats were divided into chow-fed and fructose-fed groups. The results of the euglycemic clamp study (insulin infusion rates: 6 mU/kg BW/min) showed a significant decrease in the glucose infusion rate (GIR) and the metabolic clearance rate of glucose (MCR) in fructose-fed rats compared with chow-fed rats. In skeletal muscle removed immediately after the clamp procedure, high-fructose feeding did not alter protein levels of protein kinase B (PKB/Akt), protein kinase C zeta (PKCzeta), or glucose transporter 4 (GLUT4). However, insulin-stimulated phosphorylation of Akt and PKCzeta and GLUT4 translocation to the plasma membrane were reduced. Our findings suggest that insulin resistance in fructose-fed rats is associated with impaired Akt and PKCzeta activation and GLUT4 translocation in skeletal muscle.  相似文献   

18.
19.
This paper briefly reviews the evidence for ionic channels mediating the conductance increase caused by acetylcholine application to the end-plate of skeletal muscle fibers. "Membrane noise" observed during application of constant low concentrations of acetylcholine to an end-plate is thought to arise from the random superposition of many elementary events corresponding to the opening and closing of discrete ion channels. Statistical analysis of acetylcholine-induced noise reveals an elementary conductance event of of 34 pS (1 S = 1 omega-1) amplitude and 1 msec duration at room temperature in rat muscle fibers. Both size and duration of the elementary event are temperature dependent. Analysis of currents induced by application of acetylcholine to the extrasynaptic membrane of chronically denervated fibers shows that the elementary conductance has a similar size but is of much longer duration. Direct recording of square pulse-like currents by a patch clamp method confirms some of the conclusions drawn from fluctuation analysis.  相似文献   

20.
This study deals with mitochondrial energy efficiency in liver and skeletal muscle mitochondria in 15 days cold exposed rats. Cold exposure strongly increases the sensitivity to uncoupling by added palmitate of skeletal muscle but not liver mitochondria, while mitochondrial energy coupling in the absence of fatty acids is only slightly affected by cold in liver and skeletal muscle. In addition, uncoupling protein 3 content does not follow changes in skeletal muscle mitochondrial coupling. It is therefore concluded that skeletal muscle could play a direct thermogenic role based on fatty acid-induced mild uncoupling of mitochondrial oxidative phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号