首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Wiche  E Briones  H Hirt  R Krepler  U Artlieb    H Denk 《The EMBO journal》1983,2(11):1915-1920
To study the individual location of the microtubule proteins MAP-1 and MAP-2 in neuronal tissues and cells, antisera to electrophoretically purified MAP-1 and MAP-2 components were raised in rabbits. When frozen sections through rat brain were examined by immunofluorescence microscopy the antibodies to MAP-1 strongly stained a variety of nerve cells including dendrites and myelinated axons in the cerebrum and cerebellum. Antibodies to MAP-2 showed similar staining patterns, except that myelinated axons were unstained. These results were confirmed by immunoelectron microscopy of frozen sections through cerebellum using the peroxidase technique. Thereby, the association of MAP-1 with microtubules was also clearly demonstrated. When cultured mouse neuroblastoma N2A cells were examined by immunofluorescence microscopy the antiserum to MAP-1 brightly stained filamentous structures resembling microtubules, whereas relatively weak and diffuse staining of the cytoplasm was observed with the antiserum to MAP-2. In agreement with the immunolocalization, MAP-1, but not MAP-2, was found as a prominent component of microtubules proteins polymerized in vitro by taxol from soluble N2A cell extracts. Together these results indicate that neuronal microtubules are preferentially associated with distinct high mol. wt. polypeptides. Therefore, they support the concept that different complements of associated proteins determine distinct functions of microtubules.  相似文献   

2.
Microtubules in the cytoplasm of rat Sertoli cell stage VI-VIII testicular seminiferous epithelium were studied morphometrically by electron microscopy. The Sertoli cell microtubules demonstrated axonal features, being largely parallel in orientation and predominantly spaced one to two microtubule diameters apart, suggesting the presence of microtubule-bound spacer molecules. Testis microtubule-associated proteins (MAPs) were isolated by a taxol, salt elution procedure. Testis MAPs promoted microtubule assembly, but to a lesser degree than brain MAPs. High molecular weight MAPs, similar in electrophoretic mobilities to brain MAP-1 and MAP-2, were prominent components of total testis MAPs, though no shared immunoreactivity was detected between testis and brain high molecular weight MAPs using both polyclonal and monoclonal antibodies. Unlike brain high molecular weight MAPs, testis high molecular weight MAPs were not heat stable. Testis MAP composition, studied on postnatal days 5, 10, 15, and 24 and in the adult, changed dramatically during ontogeny. However, the expression of the major testis high molecular weight MAP, called HMW-2, was constitutive and independent of the development of mature germ cells. The Sertoli cell origin of HMW-2 was confirmed by identifying this protein as the major MAP found in an enriched Sertoli cell preparation and in two rat models of testicular injury characterized by germ cell depletion. HMW-2 was selectively released from testis microtubules by ATP and co-purified by sucrose density gradient centrifugation with MAP-1C, a neuronal cytoplasmic dynein. The inhibition of the microtubule-activated ATPase activity of HMW-2 by vanadate and erythro-(2-hydroxy-3-nonyl)adenine and its proteolytic breakdown by vanadate-dependent UV photocleavage confirmed the dynein-like nature of HMW-2. As demonstrated by this study, the neuronal and Sertoli cell cytoskeletons share morphological, structural and functional properties.  相似文献   

3.
Microtubule-associated proteins (MAPs) interact with tubulinin vitro andin vivo. Despite that there is a large amount of information on the roles of these proteins in neurons, the data on non-neuronal MAPs or MAPs-related proteins is scarce. There is an increasing number of microtubule-interacting proteins that have been identified in different cultured cell lines, and some of them share common functional epitopes with the most well-known MAPs, MAP-2 and tau. In a search for tubulin-interacting proteins in non-neuronal cells we identified a 205 kDa protein in the monkey kidney Vero cells in culture, on the basis of immunological studies and affinity chromatography. This protein interacts with the C-terminal moiety of -tubulin and cosediments with taxol assembled microtubules, but it was not recovered after successive cycles of assembly and disassembly. The presence of neuronal MAPs such as MAP-1, MAP-2 and tau was not detected in these cells. Interestingly, the studies showed that the 205 kDa protein contained a tubulin binding motif which was recognized by site-directed antibodies that also tag tubulin binding epitopes on MAP-2 and tau. This characteristic led us to designate this protein as MBD-205, a component that shares binding domains with these MAPs, rather than as a marker of the MAPs family. On the other hand, immunofluorescence experiments using site-specific antibodies, i.e. MAP-reacting monoclonal anti-idiotypic reagent MTB6.22 and a polyclonal antibody to the second tau repeat, revealed a MBD-205 co-localization with membrane structures and microtubule-organizing centers in Vero cells. Microinjection studies along with studies on the cell distribution suggest that MBD-205 appears to play a structural role at the level of the microtubule interactions in these cells.  相似文献   

4.
One of the major groups of microtubule-associated proteins (MAPs) found associated with the microtubules isolated from HeLa cells has a molecular weight of just over 200,000. Previous work has demonstrated that these heLa MAPs are similar in several properties to MAP-2, one of the major MAPs of mammalian neural microtubules, although the two types of proteins are immunologically distinct. The 200,000 mol wt HeLa MAPs have now been found to remain soluble after incubation in a boiling water bath and to retain the ability to promote tubulin polymerization after this treatment, two unusual properties also shown by neural MAP- 2. This property of heat stability has allowed the development of a simplified procedure for purification of the 200,000 HeLa MAPs and has provided a means for detection of these proteins, even in crude cell extracts. These studies have also led to the detection of a protein in crude extracts of HeLa cells and in cycled HeLa microtubules which has been identified as MAP-2 on the basis of (a) comigration with calf brain MAP-2 on SDS PAGE, (b) presence in purified microtubules, (c) heat stability, and (d) reaction with two types of antibodies prepared against neural high molecular weight-MAPs, one of these a monoclonal antibody against hog brain MAP-2, although present in HeLa cells, is at all stages of microtubule purification a relatively minor component in comparison to the 200,000 HeLa MAP's.  相似文献   

5.
High molecular weight microtubule-associated proteins 1 and 2 (MAP-1 and MAP-2), prepared by copolymerization with tubulin, were electrophorectically separated into three and two major subcomponents, respectively, using 5% sodium dodecyl sulfate-polyacrylamide gels. By two-dimensional gel electrophoresis, all five MAP components were shown to possess a pI of around 5. Four of these proteins, MAP-1A, MAP-1C, MAP-2A, and MAP-2B, present in comparable amounts, were iodinated after electrophoretic separation and analyzed by two-dimensional peptide mapping. With both trypsin and V8 protease, almost identical patterns were obtained from MAP-2A and MAP-2B. MAP-1A and MAP-1C, too, gave similar digestion patterns, although some differences were noted. Incubation with [gamma-32P]ATP demonstrated that endogeneous protein kinase activities phosphorylated individual subcomponents at different rates. MAP-2A, the highest labeled component, was phosphorylated 2.5-fold compared to MAP-2B both in the presence and the absence of cAMP. Labeling of MAP-1 subcomponents was 4 times less than that of MAP-2A in the absence and 16 times less in the presence of cAMP. 32P-labeled MAP-2A and MAP-2B bands were indistinguishable by one-dimensional peptide mapping, as were the three MAP-1 bands. For both MAP-1 and MAP-2 subcomponents, cAMP induced phosphorylation at new molecular sites. Incubation of radiolabeled microtubule proteins with 1 mM ATP effected, upon electrophoresis, a clear shift of MAP-2A and MAP-2B bands to positions of higher apparent molecular weights, while only slightly affecting MAP-1 bands.  相似文献   

6.
Analysis of the microtubule-binding domain of MAP-2   总被引:6,自引:3,他引:3       下载免费PDF全文
《The Journal of cell biology》1985,101(5):1782-1789
We examined the microtubule-binding domain of the microtubule- associated protein (MAP), MAP-2, using rabbit antibodies that specifically bind to the microtubule-binding region ("stub") and the projection portion ("arm") of MAP-2. We found that (a) microtubules decorated with arm antibody look similar to those labeled with whole unfractionated MAP antibody, though microtubules are not labeled with stub antibody; (b) incubation of depolymerized microtubule protein with stub antibody prior to assembly partially inhibits the rate of microtubule elongation, presumably because MAPs that are complexed with antibody cannot bind to microtubules and stabilize elongating polymers; (c) the rate of appearance and amounts of 36- and 40-kD microtubule- binding peptides produced by digestion with chymotrypsin are distinct for MAPs associated with microtubules vs. MAPs free in solution. The enhanced stability of the 40-kD peptide when associated with microtubules suggests that this domain of the protein is closely associated with, or partially buried in, the microtubule surface; (d) MAP-2 is a slender, elongate molecule as determined by unidirectional platinum shadowing (90 +/- 30 nm), which is in approximate agreement with previous observations. Stub antibody labels MAP-2 in the terminal one-quarter of the extended protein, indicating an intrinsic asymmetry in the molecule.  相似文献   

7.
The structural-functional aspects of the tubulin binding domain on the microtubule-associated protein MAP-2, and its relationship with the tubulin binding domain on tau, were studied using anti-idiotypic antibodies that react specifically with the epitope(s) on MAPs involved in their interaction with tubulin in addition to other tau and MAP-2 specific antibodies. Previous studies showed that MAP-2 and tau share common binding sites on tubulin defined by the peptide sequences alpha (430-441) and beta (422-434) of tubulin subunits. Furthermore, binding experiments revealed the existence of multiple sites for the interaction of the alpha- and beta-tubulin peptides with MAP-2 and tau. Most recent studies showed that the synthetic tau peptide Val187-Gly204 (VRSKIGSTENLKHQPGGG) from the repetitive sequence on tau defines a tubulin binding site on tau. Our present immunological studies using anti-idiotypic antibodies which interact with the synthetic tau peptide and antibodies against the Val187-Gly204 tau peptide indicate that MAP-2 and tau share common antigenic determinants at the level of their respective tubulin binding domains. These antigenic determinants appear to be present in the 35 kDa tubulin binding fragment of MAP-2 and in 18-20 kDa chymotryptic fragments containing the tubulin binding site(s) on MAP-2. These findings, along with structural information on these proteins, provide strong evidence in favor of the hypothesis that tubulin binding domains on MAP-2 and tau share similar structural features.  相似文献   

8.
We have used cultured sympathetic neurons to identify microtubule proteins (tubulin and microtubule-associated proteins [MAPs]) and neurofilament (NF) proteins in pure preparations of axons and also to examine the distribution of these proteins between axons and cell bodies + dendrites. Pieces of sympathetic ganglia containing thousands of neurons were plated onto culture dishes and allowed to extend neurites. Dendrites remained confined to the ganglionic explant or cell body mass (CBM), while axons extended away from the CBM for several millimeters. Axons were separated from cell bodies and dendrites by dissecting the CBM away from cultures, and the resulting axonal and CBM preparations were analyzed using biochemical, immunoblotting, and immunoprecipitation methods. Cultures were used after 17 d in vitro, when 40-60% of total protein was in the axons. The 68,000-mol-wt NF subunit is present in both axons and CBM in roughly equal amounts. The 145,000- and 200,000-mol-wt NF subunits each consist of several variants which differ in phosphorylation state; poorly and nonphosphorylated species are present only in the CBM, whereas more heavily phosphorylated forms are present in axons and, to a lesser extent, the CBM. One 145,000-mol-wt NF variant was axon specific. Tubulin is roughly equally distributed between CBM and axon-like neurites of explant cultures. MAP-1a, MAP-1b, MAP-3, and the 60,000-mol-wt MAP are also present in the CBM and axon-like neurites and show distribution patterns similar to that of tubulin. In contrast, MAP-2 was detected only in the CBM, while tau and the 210,000-mol-wt MAP were greatly enriched in axons compared to the CBM. In immunostaining analyses, MAP-2 localized to cell bodies and dendrite-like neurites, but not to axon-like neurites, whereas antibodies to tubulin and MAP-1b localized to all regions of the neurons. The regional differences in composition of the neuronal cytoskeleton presumably generate corresponding differences in its structure, which may, in turn, contribute to the morphological differences between axons and dendrites.  相似文献   

9.
The distribution of three high molecular weight proteins, MAP-1 (Mr 330 000), MAP-2 (Mr 300 000) and plectin (Mr 300 000) in various fractions obtained in cycles of temperature-dependent polymerization/depolymerization of microtubules from rat glioma C6 cells was studied. Using gel electrophoresis and immunoautoradiography/immunoblotting all three proteins were found to codistribute only partially with tubulin because considerable parts remained in the cold-insoluble fractions. Moreover, the proteins, particularly MAPs, were proteolytically degraded during cycling. By contrast, when microtubules were polymerized with taxol after isotonic cell lysis a considerable enrichment of MAP-1 and MAP-2 was achieved; again, plectin co-distributed only partially. In this procedure too, MAPs, especially MAP-2, were found to be highly subject to proteolysis, unless free Ca2+-ions were rigorously avoided. Proteolytic fragments generated from MAP-2 were of similar size independent of whether temperature- or taxol-dependent polymerization procedures were used, suggesting the occurrence of a MAP-2-specific protease. When the spatial arrangement of the high Mr proteins on taxol-polymerized C6 cell microtubules was directly visualized using gold-immunoelectron microscopy, a periodical, apparently helical, decoration of microtubules was found for MAP-1 and MAP-2; plectin was irregularly arrayed. A predominantly helical arrangement of both MAPs was demonstrated also for microtubules reconstituted from mammalian brain.  相似文献   

10.
Microtubule-associated protein-4 (MAP-4), a major MAP in proliferating cells, consists of a microtubule-binding domain and a projection domain protruding from the microtubule wall. The former contains a Pro-rich region and an assembly-promoting (AP) sequence region which is common to the neuron-specific MAPs, MAP-2 and tau1. In this paper, we describe the phosphorylation of the Pro-rich region of MAP-4 and the suppression of its assembly-promoting activity by cdc2/H1 histone kinase. This inactivation of MAP-4 may cause disassembly of the interphase microtubular network at the end of the G2 phase of the cell cycle.  相似文献   

11.
J C Joly  D L Purich 《Biochemistry》1990,29(38):8916-8920
Bovine brain high molecular weight microtubule-associated proteins (MAPs) can be displaced from assembled tubules by peptides corresponding to the second of three nonidentical repeated sequences in mouse MAP-2. The octadecapeptide m2 (VTSKCGSLKNIRHRPGGG) can release MAP-1b from MAP-containing microtubules, and the extended second-sequence peptide m2' (VTSKCGSLKNIRHRPGGGRVK) displaces MAP-1a and MAP-1b as well as MAP-2a and MAP-2b. Peptides m2 and m2' stimulate tubulin polymerization in the absence of MAPs or microtubule-stabilizing agents, and m2' acts as a competitive inhibitor of radiolabeled MAP-2 binding. The dissociation constant for MAP-2 binding to taxol-stabilized tubules was 3.4 microM in the absence of m2' and 14 microM in the presence of 1.5 mM of the m2' peptide. We estimate that the inhibition constant for peptide m2' is about 0.5 mM, about 100 times lower than for the Km of MAP-2. These observations suggest that the second repeated sequence in MAP-2 may represent an important recognition site for MAP binding to microtubules and that other structural features within MAP-2 may reinforce the strength of MAP-microtubule interactions.  相似文献   

12.
A neuroblastoma protein related to the brain microtubule-associated protein, MAP-1B, as determined by immunoprecipitation and coassembly with brain microtubules, becomes phosphorylated when N2A mouse neuroblastoma cells are induced to generate microtubule-containing neurites. To characterize the protein kinases that may be involved in this in vivo phosphorylation of MAP-1B, we have studied its in vitro phosphorylation. In brain microtubule protein, MAP-1B appears to be phosphorylated in vitro by an endogenous casein kinase II-like activity which also phosphorylates the related protein MAP-1A but scarcely phosphorylates MAP-2. A similar kinase activity has been detected in cell-free extracts of differentiating N2A cells. Using brain MAP preparations devoid of endogenous kinase activities and different purified protein kinases, we have found that MAP-1B is barely phosphorylated by cAMP-dependent protein kinase, Ca/calmodulin-dependent protein kinase, or Ca/phospholipid-dependent protein kinase whereas MAP-1B is one of the preferred substrates, together with MAP-1A, for casein kinase II. Brain MAP-1B phosphorylated in vitro by casein kinase II efficiently coassembles with microtubule proteins in the same way as in vivo phosphorylated MAP-1B from neuroblastoma cells. Furthermore, the phosphopeptide patterns of brain MAP-1B phosphorylated in vitro by either purified casein kinase II or an extract obtained from differentiating neuroblastoma cells are identical to each other and similar to that of in vivo phosphorylated neuroblastoma MAP-1B. Thus, we suggest that the observed phosphorylation of a protein identified as MAP-1B during neurite outgrowth is mainly due to the activation of a casein kinase II-related activity in differentiating neuroblastoma cells. This kinase activity, previously implicated in beta-tubulin phosphorylation (Serrano, L., J. Díaz-Nido, F. Wandosell, and J. Avila, 1987. J. Cell Biol. 105: 1731-1739), may consequently have an important role in posttranslational modifications of microtubule proteins required for neuronal differentiation.  相似文献   

13.
Microtubule associated protein-1 of brain and its intracellular 350kd analogues were highly sensitive to purified Ca2+-dependent cysteine proteinase (calpain). After 15 second digestion, we detected intermediate degradation products of MAP-1 by immunoblotting using anti-MAP-1 antibody as 290, 260, 220, 170, 140, 112, 80, 68, and 32kd polypeptides. These values corresponded to the molecular weights of the immunoreactive polypeptides of microtubule-enriched cytoskeletons isolated from HeLa and SV-3Y1 cells, suggesting the action of endogenous calpain on intracellular MAP-1 analogues in vivo or during the course of preparation.  相似文献   

14.
The major high molecular weight microtubule-associated polypeptides from hog brain (MAP-1 and MAP-2) were compared by one- and two-dimensional peptide mapping under varied conditions and by immunological techniques. Partial digestion of MAP-1 and MAP-2 with Staphylococcus aureus V8 protease and analysis in one dimension gave rise to very similar peptide maps independent of whether 125I-, 3H-, or 32P-labeled proteins were used. One-dimensional cleavage patterns of significant similarity were also obtained by partial digestion of MAP-1 and MAP-2 using trypsin or chymotrypsin. Furthermore, a pronounced similarity, although clear nonidentity, of MAP-1 and MAP-2 was also revealed after exhaustive digestion of 125I-labeled proteins with S. aureus V8 protease or trypsin followed by analysis of peptides in two dimensions. For immunological comparison, antisera were used that had been raised in rabbits using electrophoretically purified MAP-1 and MAP-2 components as immunogens. As determined by immunoprecipitation, the antiserum raised to MAP-1 was equally reactive with MAP-1 and MAP-2 components, whereas the antiserum to MAP-2 reacted primarily with MAP-2. Indicating the presence of common as well as unique antigenic determinants on MAP-1 and MAP-2, these results, therefore, were in agreement with the peptide mapping data. Implications of these results for biosynthetic mechanisms as well as differential distribution and functions of MAPs in cells are discussed.  相似文献   

15.
We have determined the absolute phosphate content of microtubule-associated proteins (MAPs) and established that phosphorylation inhibits the actin filament cross-linking activity of MAPs and both of the major MAP components, MAP-2 and tau. Similar results were obtained with actin from rabbit muscle, hog brain, and Acanthamoeba castellanii. We used the endogenous phosphatases and kinases in hog brain microtubule protein to modulate MAP phosphate level before isolating heat-stable MAPs. MAPs isolated directly from twice-cycled microtubule protein contain 7.1 +/- 0.1 (S.E.) mol of phosphate/300,000 g protein. After incubating microtubule protein without ATP, MAPs, had 4.9 +/- 0.6 phosphates. After incubating microtubule protein with 1 mM ATP and 5 microM cAMP in 2 mM EGTA, MAPs had 8.6 +/- 0.5 phosphates but there was also exchange of three more [32P]phosphates from gamma-labeled ATP for preexisting MAP phosphate. Incubation of microtubule protein with ATP and cAMP in 5 mM CaCl2 resulted in exchange but no net addition of phosphate to MAPs. We fractionated the MAP preparations by gel filtration and obtained MAP-2 with 4.3 to 7.5 and tau with 1.5 to 2.2 mol of phosphate/mol of protein depending on how we treated the microtubule protein prior to MAP isolation. The actin filament cross-linking activity of whole MAPs, MAP-2, and tau depended on the MAP-phosphate content. In all cases, phosphorylation of MAPs inhibited actin filament cross-linking activity. The concentration of high phosphate MAPs required to form a high viscosity solution with actin filaments was 2 to 4 times more than that of low phosphate. MAPs. During incubation of microtubule protein with [gamma-32P]ATP, only MAP peptides are labeled. Treatment of these MAPs with either acid or alkaline phosphatase removes phosphate mainly from MAP-2, with an increase in actin filament cross-linking activity. Thus, both MAP phosphorylation and the effect of phosphorylation on actin cross-linking activity of MAPs are reversible.  相似文献   

16.
E Hamel  C M Lin 《Biochemistry》1984,23(18):4173-4184
A new method for separating microtubule-associated proteins (MAPs) and tubulin, appropriate for relatively large-scale preparations, was developed. Most of the active tubulin was separated from the MAPs by centrifugation after selective polymerization of the tubulin was induced with 1.6 M 2-(N-morpholino)ethanesulfonate (Mes) and GTP. The MAPs-enriched supernatant was concentrated and subsequently clarified by prolonged centrifugation. The supernatant (total soluble MAPs) contained almost no tubulin, most of the nucleosidediphosphate kinase activity of the microtubule protein, good activity in promoting microtubule assembly in 0.1 M Mes, and proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The pellet, inactive in supporting microtubule assembly, contained denatured tubulin, most of the ATPase activity of the microtubule protein, and significant amounts of protein with the electrophoretic mobility of MAP-2. Insoluble material at this and all previous stages, including the preparation of the microtubule protein, could be heat extracted to yield soluble protein active in promoting microtubule assembly and containing MAP-2 as a major constituent. The total soluble MAPs were further purified by DEAE-cellulose chromatography into bound and unbound components, both of which induced microtubule assembly. The bound component (DEAE-MAPs) contained proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The polymerization reaction induced by the unbound component (flow-through MAPs) produced very high turbidity readings. This was caused by the formation of bundles of microtubules. Although the flow-through MAPs contained significantly more ATPase, tubulin-independent GTPase, and, especially, nucleosidediphosphate kinase activity than the DEAE-MAPs, preparation of a MAPs fraction without these enzymes required heat treatment.  相似文献   

17.
18.
Microtubule protein purified from brain tissue by cycles of in vitro assembly-disassembly contains ATPase activity that has been postulated to be associated with microtubule-associated proteins (MAPs) and therefore significant for studies of microtubule-dependent motility. In this paper we demonstrate that greater than 90% of the ATPase activity is particulate in nature and may be derived from contaminating membrane vesicles. We also show that the MAPs (MAP-1, MAP-2, and tau factors) and other high molecular weight polypeptides do not contain significant amounts of ATPase activity. These findings do not support the concept of "brain dynein" or of MAPs with ATPase activity.  相似文献   

19.
Promotion of MAP/MAP interaction by taxol   总被引:3,自引:0,他引:3  
The effects of taxol on microtubule-associated proteins of high molecular weight (MAPs) were studied in vitro. After negative staining, microtubules reconstituted in the presence of taxol from preparations of partially purified tubulin and MAPs, besides being bundled, displayed prominent elongated or globular extensions without apparent regularity. These extensions, but not the tubulin polymer, were heavily decorated after immuno-gold-labeling using antibodies to MAP-1 and MAP-2. Microtubules reconsituted in the absence of taxol showed a much more regular, and apparently helical, arrangement of MAPs along their surfaces. The formation of polymeric structures was also observed when preparation of MAPs free of tubulin were incubated with taxol. In this case in addition to large network-type aggregates with little apparent substructure, more regular structures seemingly consisting of approximately 5-nm-thick filaments arrayed in parallel were observed. Taxol-induced MAP aggregation occurred rapidly and was directly proportional to the concentration of protein, as revealed by optical density measurements. It is concluded that taxol, aside from promoting the assembly of tubulin and stabilizing microtubules, promotes MAP/MAP interaction.  相似文献   

20.
During experiments studying dietary effects on phosphorylation/dephosphorylation of MAP-2 we found that incubation of microtubules with alkaline phosphatase resulted in extensive proteolysis of MAP-2 but not of tubulin or Tau proteins. In the absence of tubulin, when microtubule-associated proteins (MAPs) were incubated with alkaline phosphatase, MAP-2 was not proteolyzed. This suggests that binding to tubulin induces a conformational change in MAP-2 which makes it more susceptible to proteolysis. The proteolysis of MAP-2 by alkaline phosphatase was prevented by inhibitors of serine proteases, suggesting that the commercial preparation of the enzyme is contaminated by a serine protease and/or that the enzyme also has a weaker proteolytic activity. In addition, selective proteolysis of MAP-2 can be obtained with the metalloprotease collagenase. Brain homogenates are shown to contain a Ca2+-dependent protease which selectively degrades MAP-2 bound to tubulin. These results suggest that selective proteolysis of tubulin-bound MAP-2 could play a role in the regulation of microtubule dynamics in response to extracellular signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号