首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A conserved threonine found in the majority of cytochromes P450 (P450s) has been implicated in the activation of dioxygen during the catalytic cycle. P450cin (CYP176A) has been found to be an exception to this paradigm, where the conserved threonine has been replaced with an asparagine. Prior studies with a P450cin N242A mutant established that the Asn-242 was not a functional replacement for the conserved threonine but was essential for the regio- and stereocontrol of the oxidation of cineole. To explore further how P450cin controls the activation of the dioxygen in the absence of the conserved threonine, two concurrent lines of investigation were followed. Modification of P450cin indicated that the Thr-243 was not involved in controlling the protonation of the hydroperoxy species. In addition, the N242T mutant did not enhance the rate and/or efficiency of catalytic turnover of cineole by P450cin. In parallel experiments, the substrate cineole was modified by removing the ethereal oxygen to produce camphane or 2,2-dimethylbicyclo[2.2.2]octane (cinane). An analogous experiment with P450EryF showed that a hydroxyl group on the substrate was vital, and in its absence catalytic turnover was effectively abolished. Catalytic turnover of P450cin with either of these alternative substrates (camphane or cinane) revealed that in the absence of the ethereal oxygen there was still a significant amount of coupling of the NADPH-reducing equivalents to the formation of oxidised product. Again the substrate itself was not found to be important in controlling oxygen activation, in contrast to P450EryF, but was shown to be essential for regio- and stereoselective substrate oxidation. Thus, it still remains unclear how dioxygen activation in the catalytic turnover of cineole by P450cin is controlled.  相似文献   

2.
Cytochromes P450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiologic and xenobiotic compounds in eukaryotes and prokaryotes. Studies on bacterial P450s, particularly those involved in monoterpene oxidation, have provided an integral contribution to our understanding of these proteins, away from the problems encountered with eukaryotic forms. We report here a novel cytochrome P450 (P450(cin), CYP176A1) purified from a strain of Citrobacter braakii that is capable of using cineole 1 as its sole source of carbon and energy. This enzyme has been purified to homogeneity and the amino acid sequences of three tryptic peptides determined. By using this information, a PCR-based cloning strategy was developed that allowed the isolation of a 4-kb DNA fragment containing the cytochrome P450(cin) gene (cinA). Sequencing revealed three open reading frames that were identified on the basis of sequence homology as a cytochrome P450, an NADPH-dependent flavodoxin/ferrodoxin reductase, and a flavodoxin. This arrangement suggests that P450(cin) may be the first isolated P450 to use a flavodoxin as its natural redox partner. Sequencing also identified the unprecedented substitution of a highly conserved, catalytically important active site threonine with an asparagine residue. The P450 gene was subcloned and heterologously expressed in Escherichia coli at approximately 2000 nmol/liter of original culture, and purification was achieved by standard protocols. Postulating the native E. coli flavodoxin/flavodoxin reductase system might mimic the natural redox partners of P450(cin), it was expressed in E. coli in the presence of cineole 1. A product was formed in vivo that was tentatively identified by gas chromatography-mass spectrometry as 2-hydroxycineole 2. Examination of P450(cin) by UV-visible spectroscopy revealed typical spectra characteristic of P450s, a high affinity for cineole 1 (K(D) = 0.7 microm), and a large spin state change of the heme iron associated with binding of cineole 1. These facts support the hypothesis that cineole 1 is the natural substrate for this enzyme and that P450(cin) catalyzes the initial monooxygenation of cineole 1 biodegradation. This constitutes the first characterization of an enzyme involved in this pathway.  相似文献   

3.
Cytochrome P450cin catalyzes the monooxygenation of 1,8-cineole, which is structurally very similar to d-camphor, the substrate for the most thoroughly investigated cytochrome P450, cytochrome P450cam. Both 1,8-cineole and d-camphor are C(10) monoterpenes containing a single oxygen atom with very similar molecular volumes. The cytochrome P450cin-substrate complex crystal structure has been solved to 1.7 A resolution and compared with that of cytochrome P450cam. Despite the similarity in substrates, the active site of cytochrome P450cin is substantially different from that of cytochrome P450cam in that the B' helix, essential for substrate binding in many cytochrome P450s including cytochrome P450cam, is replaced by an ordered loop that results in substantial changes in active site topography. In addition, cytochrome P450cin does not have the conserved threonine, Thr252 in cytochrome P450cam, which is generally considered as an integral part of the proton shuttle machinery required for oxygen activation. Instead, the analogous residue in cytochrome P450cin is Asn242, which provides the only direct protein H-bonding interaction with the substrate. Cytochrome P450cin uses a flavodoxin-like redox partner to reduce the heme iron rather than the more traditional ferredoxin-like Fe(2)S(2) redox partner used by cytochrome P450cam and many other bacterial P450s. It thus might be expected that the redox partner docking site of cytochrome P450cin would resemble that of cytochrome P450BM3, which also uses a flavodoxin-like redox partner. Nevertheless, the putative docking site topography more closely resembles cytochrome P450cam than cytochrome P450BM3.  相似文献   

4.
P450cin (CYP176A) is a rare bacterial P450 in that contains an asparagine (Asn242) instead of the conserved threonine that almost all other P450s possess that directs oxygen activation by the heme prosthetic group. However, P450cin does have the neighbouring, conserved acid (Asp241) that is thought to be involved indirectly in the protonation of the dioxygen and affect the lifetime of the ferric-peroxo species produced during oxygen activation. In this study, the P450cin D241N mutant has been produced and found to be analogous to the P450cam D251N mutant. P450cin catalyses the hydroxylation of cineole to give only (1R)-6β-hydroxycineole and is well coupled (NADPH consumed: product produced). The P450cin D241N mutant also hydroxylated cineole to produce only (1R)-6β-hydroxycineole, was moderately well coupled (31 ± 3%) but a significant reduction in the rate of the reaction (2% as compared to wild type) was observed. Catalytic oxidation of a variety of substrates by D241N P450cin were used to examine if typical reactions ascribed to the ferric-peroxo species increased as this intermediate is known to be more persistent in the P450cam D251N mutant. However, little change was observed in the product profiles of each of these substrates between wild type and mutant enzymes and no products consistent with chemistry of the ferric-peroxo species were observed to increase.  相似文献   

5.
A strongly conserved threonine residue in the I-helix of cytochrome P450 enzymes participates in a proton delivery system for binding and cleavage of dioxygen molecules. 6-Deoxyerythronolide B hydroxylase (P450eryF) is unusual in that the conserved threonine residue is replaced by alanine in this enzyme. On the basis of the crystal structures of substrate-bound P450eryF, it has been proposed that the C-5 hydroxyl group of the substrate and serine-246 of the enzyme form hydrogen bonds with water molecules 519 and 564, respectively. This hydrogen bonding network constitutes the proton delivery system whereby P450eryF maintains its catalytic activity in the absence of a threonine hydroxyl group in the conserved position. To further assess the role in the proton delivery system of hydroxyl groups around the active site, three mutant forms of P450eryF (A245S, S246A, and A245S/S246A) were constructed and characterized. In each case, decreased catalytic activity and increased uncoupling could be correlated with changes in the hydrogen bonding environment. These results suggest that Ser-246 does indeed indirectly participate in the proton shuttling pathway, and also strongly support our previous hypothesis that the C-5 hydroxyl group of the substrate participates in the acid-catalyzed dioxygen bond cleavage reaction.  相似文献   

6.
A strongly conserved threonine residue in the I-helix of cytochrome P450 enzymes participates in a proton delivery system for binding and cleavage of dioxygen molecules. 6-Deoxyerythronol ide B hydroxylase (P450eryF) is unusual in that the conserved threonine residue is replaced by alanine in this enzyme. On the basis of crystal structures of substrate-bound P450eryF, it has been proposed that the C-5 hydroxyl group of the substrate and serine-246 of the enzyme form hydrogen bonds with water molecules 519 and 564, respectively. This hydrogen bonding network constitutes the proton delivery system whereby P450eryF maintains its catalytic activity in the absence of a threonine hydroxyl group in the conserved position. To further assess the role in the proton delivery system of hydroxyl groups around the active site, three mutant forms of P450eryF (A245S, S246A, and A245S/S246A) were constructed and characterized. In each case, decreased catalytic activity and increased uncoupling could be correlated with changes in the hydrogen bonding environment. These results suggest that Ser-246 does indeed participate in the proton shuttling pathway, and also support our previous hypothesis that the C-5 hydroxyl group of the substrate participates in the acid-catalyzed dioxygen bond cleavage reaction. Copyright 2000 Academic Press.  相似文献   

7.
Cytochrome P450eryF (CYP107A) from Saccaropolyspora ertherea catalyzes the hydroxylation of 6-deoxyerythronolide B, one of the early steps in the biosynthesis of erythromycin. P450eryF has an alanine rather than the conserved threonine that participates in the activation of dioxygen (O(2)) in most other P450s. The initial structure of P450eryF (Cupp-Vickery, J. R., Han, O., Hutchinson, C. R., and Poulos, T. L. (1996) Nat. Struct. Biol. 3, 632-637) suggests that the substrate 5-OH replaces the missing threonine OH group and holds a key active site water molecule in position to donate protons to the iron-linked dioxygen, a critical step for the monooxygenase reaction. To probe the proton delivery system in P450eryF, we have solved crystal structures of ferrous wild-type and mutant (Fe(2+)) dioxygen-bound complexes. The catalytic water molecule that was postulated to provide protons to dioxygen is absent, although the substrate 5-OH group donates a hydrogen bond to the iron-linked dioxygen. The hydrogen bond network observed in the wild-type ferrous dioxygen complex, water 63-Glu(360)-Ser(246)-water 53-Ala(241) carbonyl in the I-helix cleft, is proposed as the proton transfer pathway. Consistent with this view, the hydrogen bond network in the O(2).A245S and O(2) .A245T mutants, which have decreased or no enzyme activity, was perturbed or disrupted, respectively. The mutant Thr(245) side chain also perturbs the hydrogen bond between the substrate 5-OH and dioxygen ligand. Contrary to the previously proposed mechanism, these results support the direct involvement of the substrate in O(2) activation but raise questions on the role water plays as a direct proton donor to the iron-linked dioxygen.  相似文献   

8.
Y Madrona  S Tripathi  H Li  TL Poulos 《Biochemistry》2012,51(33):6623-6631
The crystal structure of the P450cin substrate-bound nitric oxide complex and the substrate-free form have been determined revealing a substrate-free structure that adopts an open conformation relative to the substrate-bound structure. The region of the I helix that forms part of the O(2) binding pocket shifts from an α helix in the substrate-free form to a π helix in the substrate-bound form. Unique to P450cin is an active site residue, Asn242, in the I helix that H-bonds with the substrate. In most other P450s this residue is a Thr and plays an important role in O(2) activation by participating in an H-bonding network required for O(2) activation. The π/α I helix transition results in the carbonyl O atom of Gly238 moving in to form an H-bond with the water/hydroxide ligand in the substrate-free form. The corresponding residue, Gly248, in the substrate-free P450cam structure experiences a similar motion. Most significantly, in the oxy-P450cam complex Gly248 adopts a position midway between the substrate-free and -bound states. A comparison between these P450cam and the new P450cin structures provides insights into differences in how the two P450s activate O(2). The structure of P450cin complexed with nitric oxide, a close mimic of the O(2) complex, shows that Gly238 is likely to form tighter interactions with ligands than the corresponding Gly248 in P450cam. Having a close interaction between an H-bond acceptor, the Gly238 carbonyl O atom, and the distal oxygen atom of O(2) will promote protonation and hence further reduction of the oxy complex to the hydroperoxy intermediate resulting in heterolytic cleavage of the peroxide O-O bond and formation of the active ferryl intermediate required for substrate hydroxylation.  相似文献   

9.
Cytochrome P450 2D6 (CYP2D6) is one of the most important cytochromes P450 in humans. Resonance Raman data from the T309V mutant of CYP2D6 show that the substitution of the conserved I-helix threonine situated in the enzyme’s active site perturbs the heme spin equilibrium in favor of the six-coordinated low-spin species. A mechanistic hypothesis is introduced to explain the experimental observations, and its compatibility with the available structural and spectroscopic data is tested using quantum-mechanical density functional theory calculations on active-site models for both the CYP2D6 wild type and the T309V mutant. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Alois Bonifacio, André R. Groenhof and Peter H. J. Keizers contributed equally to this work.  相似文献   

10.
Most microsomal P450s have a conserved "threonine cluster" composed of three Thrs (Thr319, Thr321, Thr322 for P450d) at a putative distal site. An ionic amino acid at 318 is also well conserved as Glu or Asp for most P450s. To understand the role of these conserved polar amino acids at the putative distal site in the catalytic function of microsomal P450, we studied how mutations at this site of P450d influence the activation of molecular oxygen in the reconstituted system. Catalytic activity (0.02 min-1) toward 7-ethoxycoumarin of the Glu318Ala mutant of P450d was just 6% of that (0.33 min-1) of the wild type, while those of Glu318Asp, Thr319Ala, and Thr322Ala were comparable to or even higher than that of the wild type. Consumption rates of O2 and formation rates of H2O2 of those mutants varied in accord with the catalytic activities. Especially, the efficiency (0.5%) of incorporated oxygen atom to the substrate versus produced H2O2 for the Glu318Ala mutant was much lower than that (3.7%) of the wild type, while that (58.8%) for the mutant Glu318Asp was 16-fold higher than that of the wild type. In addition, the autoxidation [Fe(II)---- Fe(III)] rate (0.074 s-1) of the Glu318Ala mutant was much lower than those (0.374-0.803 s-1) of the wild type and other mutants. Thus, we strongly suggest that Glu318 plays an important role in the catalytic function toward 7-ethoxycoumarin of microsomal P450d.  相似文献   

11.
Cytochrome P450(eryF) (CYP107A1), which hydroxylates deoxyerythronolide B in erythromycin biosynthesis, lacks the otherwise highly conserved threonine that is thought to promote O-O bond scission. The role of this threonine is satisfied in P450(eryF) by a substrate hydroxyl group, making deoxyerythronolide B the only acceptable substrate. As shown here, replacement of Ala(245) by a threonine enables the oxidation of alternative substrates using either H(2)O(2) or O(2)/spinach ferredoxin/ferredoxin reductase as the source of oxidizing equivalents. Testosterone is oxidized to 1-, 11alpha-, 12-, and 16alpha-hydroxytestosterone. A kinetic solvent isotope effect of 2.2 indicates that the A245T mutation facilitates dioxygen bond cleavage. This gain-of-function evidence confirms the role of the conserved threonine in P450 catalysis. Furthermore, a Hill coefficient of 1.3 and dependence of the product distribution on the testosterone concentration suggest that two testosterone molecules bind in the active site, in accord with a published structure of the P450(eryF)-androstenedione complex. P450(eryF) is thus a structurally defined model for the catalytic turnover of multiply bound substrates proposed to occur with CYP3A4. In view of its large active site and defined structure, catalytically active P450(eryF) mutants are also attractive templates for the engineering of novel P450 activities.  相似文献   

12.
Based on sequence alignments and homology modeling, threonine 309 in cytochrome P450 2D6 (CYP2D6) is proposed to be the conserved I-helix threonine, which is supposed to be involved in dioxygen activation by CYPs. The T309V mutant of CYP2D6 displayed a strong shift from O-dealkylation to N-dealkylation reactions in oxidation of dextromethorphan and 3,4-methylenedioxymethylamphetamine. This may be explained by an elevated ratio of hydroperoxo-iron to oxenoid-iron of the oxygenating species. In consistence, using cumene hydroperoxide, which directly forms the oxenoid-iron, the T309V mutant again selectively catalyzed the O-dealkylation reactions. The changed ratio of oxygenating species can also explain the decreased activity and changed regioselectivity that were observed in 7-methoxy-4-(aminomethyl)-coumarin and bufuralol oxidation, respectively, by the T309V mutant. Interestingly, the T309V mutant always showed a significantly increased, up to 75-fold, higher activity compared to that of the wild-type when using cumene hydroperoxide. These results indicate that T309 in CYP2D6 is involved in maintaining the balance of multiple oxygenating species and thus influences substrate and regioselectivity.  相似文献   

13.
Oligonucleotide-directed mutagenesis was used to substitute Asn or Val for residue Asp-242 in the beta-subunit of Escherichia coli F1-ATPase. Asp-242 is strongly conserved in beta-subunits of F1-ATPase enzymes, in a region of sequence which shows homology with numerous nucleotide-binding proteins. By analogy with adenylate kinase (Fry, D.C., Kuby, S.A., and Mildvan, A.S. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 907-911), beta-Asp-242 of F1-ATPase might participate in catalysis through electrostatic effects on the substrate Mg2+ or through hydrogen bonding to the substrate(s); an acid-base catalytic role is also plausible. The substitutions Asn and Val were chosen to affect the charge, hydrogen-bonding ability, and hydrophobicity of residue beta-Asp-242. Both mutations significantly impaired oxidative phosphorylation rates in vivo and membrane ATPase and ATP-driven proton-pumping activities in vitro. Asn-242 was more detrimental than Val-242. Purified soluble mutant F1-ATPases had normal molecular size and subunit composition, and displayed 7% (beta-Asn-242) and 17% (beta-Val-242) of normal specific Mg-ATPase activity. The relative MgATPase activities of both mutant enzymes showed similar pH dependence to normal. Relative MgATPase and CaATPase activities of normal and mutant enzymes were compared at widely varied pMg and pCa. The mutations had little effect on KM MgATP, but KM CaATP was reduced. The data showed that the carboxyl side-chain of beta-Asp-242 is not involved in catalysis either as a general acid-base catalyst or through direct involvement in any protonation/deprotonation-linked mechanism, nor is it likely to be directly involved in liganding to substrate Mg2+ during the reaction. Specificity constants (kcat/KM) for MgATP and CaATP were reduced in both mutant enzymes, showing that the mutations destabilized interactions between the catalytic nucleotide-binding domain and the transition state.  相似文献   

14.
CYP152A1 is an unusual, peroxygenase enzyme that catalyzes the beta- or alpha-hydroxylation of fatty acids by efficiently introducing an oxygen atom from H2O2 to the fatty acid. To clarify the mechanistic roles of amino acid residues in this enzyme, we have used site-directed mutagenesis of residues in the putative distal helix and measured the spectroscopic and enzymatic properties of the mutant proteins. Initially, we carried out Lys-scanning mutagenesis of amino acids in this region to determine residues of CYP152A1 that might have a mechanistic role. Among the Lys mutants, only P243K gave an absorption spectrum characteristic of a nitrogenous ligand-bound form of a ferric P450. Further investigation of the Pro243 site revealed that a P243H mutant also exhibited a nitrogen-bound form, but that the mutants P243A or P243S did not. On the hydroxylation of myristic acid by the Lys mutants, we observed a large decrease in activity for R242K and A246K. We therefore examined other mutants at amino acid positions 242 and 246. At position 246, an A246K mutant showed a roughly 19-fold lower affinity for myristic acid than the wild type. Replacing Ala246 with Ser decreased the catalytic activity, but did not affect affinity for the substrate. An A246V mutant showed slightly reduced activity and moderately reduced affinity. At position 242, an R242A showed about a fivefold lower affinity than the wild type for myristic acid. The Km values for H2O2 increased and Vmax values decreased in the order of wild type, R242K, and R242A when H2O2 was used; furthermore, Vmax/Km was greatly reduced in R242A compared with the wild type. If cumene hydroperoxide was used instead of H2O2, however, the Km values were not affected much by these substitutions. Together, our results suggest that in CYP152A1 the side chain of Pro243 is located close to the iron at the distal side of a heme molecule; the fatty acid substrate may be positioned near to Ala246 in the catalytic pocket, although Ala246 does not participate in hydrophobic interactions with the substrate; and that Arg242 is a critical residue for substrate binding and H2O2-specific catalysis.  相似文献   

15.
A Thr (or Ser) residue on the I-helix is a highly conserved structural feature of cytochrome P450 enzymes. It is believed to be indispensable as a proton delivery shuttle in the oxygen activation process. Previous work showed that P450cin (CYP176A1), which contains an Asn instead of the conserved Thr, is fully functional in the catalytic oxidation of cineole [D.B. Hawkes, G.W. Adams, A.L. Burlingame, P.R. Ortiz de Montellano, J.J. De Voss, J. Biol. Chem. 277 (2002) 27725-27732]. To determine whether the substitution of Asn for Thr is specific or general, the conserved Thr252 in P450cam (CYP101) was mutated to generate the T252N, T252N/V253T, and T252A mutants. Steady-state kinetic analysis of the oxidation of camphor by these mutants indicated that the T252N and T252N/V253T mutants have comparable turnover numbers but higher Km values relative to the wild-type enzyme. Spectroscopic binding assays indicate that the higher Km values reflect a decrease in the camphor binding affinity. Non-productive H2O2 generation was negligible with the T252N and T252N/V253T mutants, but, as previously observed, was dominant in the T252A mutant. Our results, and a structure model based on the crystal structures of the ferrous dioxygen complexes of P450cam and its T252A mutant, suggest that Asn252 can stabilize the ferric hydroperoxy intermediate, preventing premature release of H2O2 and enabling addition of the second proton to the distal oxygen to generate the catalytic ferryl species.  相似文献   

16.
The cytochrome P450 monooxygenases (P450s) catalyze a vast array of oxygenation reactions that can be useful in biocatalytic applications. CYP101J2 from Sphingobium yanoikuyae is a P450 that catalyzes the hydroxylation of 1,8‐cineole. Here we report the crystallization and X‐ray structure elucidation of recombinant CYP101J2 to 1.8 Å resolution. The CYP101J2 structure shows the canonical P450‐fold and has an open conformation in the absence of substrate. Analysis of the structure revealed that CYP101J2, in the absence of substrate, forms a well‐ordered substrate‐binding channel that suggests a unique form of substrate guidance in comparison to other bacterial 1,8‐cineole‐hydroxylating P450 enzymes. Proteins 2017; 85:945–950. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Mutations designed by analysis of the Rous sarcoma virus (RSV) and human immunodeficiency virus (HIV)-1 protease (PR) crystal structures were introduced into 1) the substrate binding pocket, 2) the substrate enclosing "flaps," and 3) surface loops of RSV PR. Each mutant PR was expressed in Escherichia coli. Changes in activity were detected by following cleavage of a truncated (NC-PR) precursor polypeptide in E. coli and cleavage of synthetic peptide substrates representing RSV and HIV-1 PR cleavage sites in vitro. Mutations in the substrate binding pocket exchanged amino acid residues located close to the substrate in the HIV-1 PR for structurally equivalent residues in the RSV PR. Changing histidine 65 to glycine (H65G) gave an inactive enzyme, while a double mutant R105P,G106V, as well as the triple mutant, H65G,R105P,G106V, produced enzymes which showed significant activity toward a substrate that represented a HIV-1 cleavage site. Mutating the catalytic aspartate (D37S) or an adjacent conserved alanine to threonine (A40T), produced inactive enzymes. In contrast, the substitution A40S was active, but showed a reduced rate of catalysis. Mutations in the flaps of conserved glycines (G69L, G70L) produced inactive PRs. Two extended RSV PR surface loops were shortened to the size found in HIV-1 PR and resulted in drastically reduced activity. These results have confirmed some of the basic predictions made from structural models but have also revealed unexpected roles and interactions in the protein.  相似文献   

18.
From the x-ray crystal structure of CYP158A2 (Zhao, B., Guengerich, F. P., Bellamine, A., Lamb, D. C., Izumikawa, M., Lei, L., Podust, L. M., Sundaramoorthy, M., Reddy, L. M., Kelly, S. L., Kalaitzis, J. A., Stec, D., Voehler, M., Falck, J. R., Moore, B. S., Shimada, T., and Waterman, M. R. (2005) J. Biol. Chem. 280, 11599-11607), one of 18 cytochrome P450 (CYP) genes in the actinomycete Streptomyces coelicolor, ordered active site water molecules (WAT505, WAT600, and WAT640), and hydroxyl groups of the substrate flaviolin were proposed to participate in proton transfer and oxygen cleavage in this monooxygenase. To probe their roles in catalysis, we have studied the crystal structures of a substrate analogue (2-hydroxy-1,4-naphthoquinone) complex with ferric CYP158A2 (2.15 A) and the flaviolin ferrous dioxygen-bound CYP158A2 complex (1.8 A). Catalytic activity toward 2-hydroxy-1,4-naphthoquinone was approximately 70-fold less than with flaviolin. In the ferrous dioxygen-bound flaviolin complex, the three water molecules in the ferric flaviolin complex still occupy the same positions and form hydrogen bonds to the distal dioxygen atom. These findings suggest that CYP158A2 utilizes substrate hydroxyl groups to stabilize active site water and further assist in the iron-linked dioxygen activation. A continuous hydrogen-bonded water network connecting the active site to the protein surface (bulk solvent) not present in the other two ferrous dioxygen-bound P450 structures (CYP101A1/P450cam and CYP107A1/P450eryF) is proposed to participate in the proton-delivery cascade, leading to dioxygen bond scission. This ferrous-dioxygen structure suggests two classes of P450s based on the pathway of proton transfer, one using the highly conserved threonine in the I-helix (CYP101A1) and the other requiring hydroxyl groups of the substrate molecules either directly transferring protons (CYP107A1) or stabilizing a water pathway for proton transfer (CYP158A2).  相似文献   

19.
The substrate oxidation rates of P450(BM-3) are unparalleled in the cytochrome P450 (CYP) superfamily of enzymes. Furthermore, the bacterial enzyme, originating from Bacillus megaterium, has been used repeatedly as a model to study the metabolism of mammalian P450s. A specific example is presented where studying P450(BM-3) substrate dynamics can define important enzyme-substrate characteristics, which may be useful in modeling omega-hydroxylation seen in mammalian P450s. In addition, if the reactive species responsible for metabolism can be controlled to produce specific products this enzyme could be a useful biocatalyst. Based on crystal structures and the fact that the P450(BM-3) F87A mutant produces a large isotope in contrast to the native enzyme, we propose that phenylalanine 87 is responsible for hindering substrate access to the active oxygen species for nonnative substrates. Using kinetic isotopes and two aromatic substrates, p-xylene and 4,4'-dimethylbiphenyl, the role phenylalanine 87 plays in active-site dynamics is characterized. The intrinsic KIE is 7.3 +/- 2 for wtP450(BM-3) metabolism of p-xylene. In addition, stoichiometry differences were measured with the native and mutant enzyme and 4,4'-dimethylbiphenyl. The results show a more highly coupled substrate/NADPH ratio in the mutant than in the wtP450(BM-3).  相似文献   

20.
In flavocytochrome P450 BM3 there are several active site residues that are highly conserved throughout the P450 superfamily. Of these, a phenylalanine (Phe393) has been shown to modulate heme reduction potential through interactions with the implicitly conserved heme-ligand cysteine. In addition, a distal threonine (Thr268) has been implicated in a variety of roles including proton donation, oxygen activation and substrate recognition. Substrate binding in P450 BM3 causes a shift in the spin state from low- to high-spin. This change in spin-state is accompanied by a positive shift in the reduction potential (DeltaE(m) [WT+arachidonate (120 microM)]=+138 mV). Substitution of Thr268 by an alanine or asparagine residue causes a significant decrease in the ability of the enzyme to generate the high-spin complex via substrate binding and consequently leads to a decrease in the substrate-induced potential shift (DeltaE(m) [T268A+arachidonate (120 microM)]=+73 mV, DeltaE(m) [T268N+arachidonate (120 microM)]=+9 mV). Rate constants for the first electron transfer and for oxy-ferrous decay were measured by pre-steady-state stopped-flow kinetics and found to be almost entirely dependant on the heme reduction potential. More positive reduction potentials lead to enhanced rate constants for heme reduction and more stable oxy-ferrous species. In addition, substitutions of the threonine lead to an increase in the production of hydrogen peroxide in preference to hydroxylated product. These results suggest an important role for this active site threonine in substrate recognition and in maintaining an efficiently functioning enzyme. However, the dependence of the rate constants for oxy-ferrous decay on reduction potential raises some questions as to the importance of Thr268 in iron-oxo stabilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号