首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mature sheep receiving supplements of sodium chloride into the rumen were given intravenous infusions of arginine vasopressin at rates varying from 4-6-23 pmol/min (2-10 mU/min). Infusion of the hormone led to an increase in urine flow and to increases in the amounts of sodium and chloride excreted, the effect on flow was, however, the greater so that the osmolality of the urine fell during the infusions. In sheep given intravenous infusions of a hypertonic sodium chloride solution addition of vasopressin to the infusate led to the formation of a larger volume of urine containing a higher proportion of the infused salt load compared to when the salt solution alone was given. As before the effect on flow was the greater and hence the osmolality of the urine was lower when the hormone was given. In other experiments intravenous infusion of a hypertonic sodium chloride solution at rates providing 2-8 mmol NaCl/min led to increases in urine flow and increases in sodium and chloride excretion, the size of these increases being proportional to infusion rate. Plasma vasopressin levels markedly increased during these infusions, the levels seen being similar to those seen in sheep given vasopressin in amounts which increased both urine flow and electrolyte excretion. This suggests that during hypertonic salt loading vasopressin probably contributes directly to the increases in urine flow and the increases in electrolyte excretion which are seen. Further evidence in support of this was obtained in experiments in which a greater natriuretic response was seen in sheep given a hypertonic sodium chloride solution into the carotid artery as opposed to the given a hypertonic sodium chloride solution into the carotid artery as opposed to the jugular vein and where it was shown that plasma vasopressin levels were indeed higher when the solution was given into the artery.  相似文献   

2.
The renal hemodynamic and excretory effects of clonidine were tested in two groups of dogs. In one group, the drug was given directly into the renal artery at a rate of 1.2 mug/min and resulted in a significant decrease of the effective renal plasma flow (ERPF) in both kidneys, an increase in filtration fraction (FF), urine volume (UV), and free water clearance (CH2O) and had no effect upon the glomerular filtration rate (GFR), osmolar clearance (Cosm) and the excretion of sodium (UNaV), chloride (UC1V), potassium (UKV), calcium (UCaV) and phosphorous (UPO4V). No unilateral effect was appreciated. In the second group of animals it was given intravenously at a rate of 12.0 mug/min and resulted in a significant decrease of ERPF, UNaV, UC1V, and increase in FF, UV, and CH2O) but had no effect upon GFR, Cosm, UKV, UCaV and UPO4V. Systemically it decreased heart rate (H.R.) and respiratory rate (R.R.) in both groups of animals; it increased blood pressure (BP) in Group 1 and had no effect on BP in Group 2.  相似文献   

3.
In perfused livers from fed rats, rates of glucose production (glycogenolysis) were 133 +/- 12 mumol/g/hr. Infusion of 2 microM verapamil into these livers decreased the rates of glucose production significantly to 97 +/- 15 mumol/g/hr within 10 min. Conversely, rates of production of lactate plus pyruvate (glycolysis) of 64 +/- 6 mumol/g/hr were not significantly altered by verapamil (60 +/- 3 mumol/g/hr). When 50 microM verapamil was infused, however, rates of both glycogenolysis and glycolysis were diminished to 56 +/- 11 and 43 +/- 5 mumol/g/hr, respectively. In perfused livers from fasted rats, infusion of 20 mM fructose increased the rates of production of glucose (gluconeogenesis) significantly from 11 +/- 7 to 121 +/- 17 mumol/g/hr. These rates reached 138 +/- 7 mumol/g/hr upon the simultaneous infusion of verapamil (2 microM). In these livers, fructose also increased rates of production of lactate from 6 +/- 2 to 132 +/- 11 mumol/g/hr, which were further increased to 143 +/- 8 mumol/g/hr when 2 microM verapamil was infused. The results show that calcium-dependent processes involved in hepatic carbohydrate metabolism respond differently to the calcium channel blocker verapamil. Low concentrations of verapamil inhibited glycogenolysis significantly while having no effect on either glycolysis or gluconeogenesis. These data suggest that these two processes have different sensitivities to changes in intracellular calcium concentrations and/or different sources of regulatory calcium.  相似文献   

4.
The role of the hepatocyte microtubular system in the transport and excretion of bile salts and biliary lipid has not been defined. In this study the effects of microtubule inhibition on biliary excretion of micelle- and non-micelle-forming bile salts and associated lipid were examined in rats. Low-dose colchicine pretreatment had no effect on the baseline excretion of biliary bile salts and phospholipid in animals studied 1 hr after surgery (basal animals), but slightly retarded the excretion of tracer [14C]taurocholate relative to that of lumicolchicine-pretreated (control) rats. However, colchicine pretreatment resulted in a marked reduction in the excretion of 2 mumol/100 g doses of a series of four micelle-forming bile salts of differing hydrophilicity, but had no significant effect on the excretion of the non-micelle-forming bile salt, taurodehydrocholate. Continuous infusion of 0.2 mumol of taurocholate/(100 g.min) following 24 hr of biliary drainage (depleted/reinfused animals) resulted in physiologic bile flow with biliary excretion rates of bile salts, phospholipid, and cholesterol that were markedly inhibited (mean 33, 39, and 42%, respectively) by colchicine or vinblastine pretreatment. Excretion of tracer [14C]taurocholate also was markedly delayed by colchicine in these bile salt-depleted/reinfused animals. In contrast, colchicine did not inhibit bile salt excretion in response to reinfusion of taurodehydrocholate. Thus, under basal conditions, the microtubular system appears to play a minor role in hepatic transport and excretion of bile salts and biliary lipid. However, biliary excretion of micelle-forming bile salts and associated phospholipid and cholesterol becomes increasingly dependent on microtubular integrity as the transcellular flux and biliary excretion of bile salts increases, in both bile salt-depleted and basal animals. We postulate that cotransport of micelle-forming bile salts and lipids destined for biliary excretion, via an intracellular vesicular pathway, forms the basis for this microtubule dependence.  相似文献   

5.
We have found that arginine vasopressin (AVP) (10 pg/ml) stimulates urinary kallikrein in the isolated erythrocyte perfused rat kidney. (In this model, perfusate flow rate approximates blood flow rates in vivo and morphology is normal.) Urinary kallikrein excretion rose from 6.9 +/- 0.8 to 14.9 +/- 2.4 ng/min 20 min after the addition of AVP to the perfusate, and then fell towards baseline levels over the next 30 min. 1-Desamino-8-D-AVP (8 pg/ml) caused a comparable increase in kallikrein excretion. Prostaglandin synthesis inhibition with indomethacin did not alter the stimulatory effect of AVP on kallikrein excretion. Parathyroid hormone 1-34 (144 ng/ml) and calcitonin (102 ng/ml) also increased urinary kallikrein. Kallikrein excretion rose from 9.1 +/- 2.0 to 24 +/- 4.5 ng/min in response to calcitonin and from 8.3 +/- 1.6 to 43.7 +/- 3.4 ng/min following the addition of parathyroid hormone to the perfusate. Kallikrein was found to accumulate in the perfusate in a linear fashion. Based on the slope of the relationship between perfusate kallikrein and time, the rate of release of kallikrein into the perfusate was estimated to be 0.79 ng/min in control kidneys. The rate of release of kallikrein into the perfusate in kidneys treated with AVP was the same (0.74 ng/min). Thus while kallikrein is released into the perfusate, this process is not influenced by AVP. In conclusion, AVP stimulates release of kallikrein into the urine (but not the perfusate) independently of systemic events. The effect of AVP is not mediated by prostaglandins. This effect of AVP is mediated via stimulation of the V2 receptor and also occurs in response to two other hormones (calcitonin and parathyroid hormone) that are known to stimulate adenyl cyclase in the rat distal nephron.  相似文献   

6.
Changes in the composition of bile accompanying the maximum biliary excretion (Emax) of bilirubin were investigated in sheep. Sheep fitted with chronic 'T-tubes' in the common bile duct were infused with taurocholate and bilirubin at various rates. Bile collected during both pre- and post-bilirubin steady-state periods was analyzed for the biliary concentration of electrolytes, bile salts, and bilirubin. Bilirubin Emax was 24.6 mumol/min while bile salt excretion during this period was 103 mumol/min. At Emax bilirubin entry into bile reached a concentration of 16.1 mumol/mL, increased the biliary concentration of sodium, did not change osmolarity of bile, and did not increase bile flow. The data suggest that bilirubin either interacts with mixed micelles in bile or forms molecular aggregates.  相似文献   

7.
The purpose of this study was to investigate the effect of norepinephrine and vasopressin on urinary kallikrein excretion in the rat. Two studies were undertaken: (a) acute experiments in which the rats were infused with 30% dextrose in water with the addition of norepinephrine or vasopressin, (b) chronic experiments in which the drugs were infused during seven days through an osmotic minipump. In acute experiments, urinary kallikrein excretion increased without modification in urinary flow and glomerular filtration rate. In chronic experiments, urinary kallikrein excretion was not modified in norepinephrine-treated rats and decreased in vasopressin-infused animals. This decrease followed the modifications of the urine flow. In chronic experiments the dextrose infusion increased urinary kallikrein excretion. In all the groups studied a positive correlation between urine flow and urinary kallikrein excretion was observed. It is concluded that norepinephrine and vasopressin are important stimulators of the urinary kallikrein excretion only in those circumstances where it is necessary to eliminate an excess of water.  相似文献   

8.
Effect of p-chlorphenilalanine and 5-hydroxytriptophan on the urine flow (V), glomerular filtration rate (GFR), free water reabsorption (TCH2O), and sodium fraction excretion (ENa.F%) in Wistar rats loaded with water or 2% sodium chloride solution, was studied. It was found that treatment of rats with inhibitor of serotonin biosynthesis, p-chlorphenilalanine (300 mg/kg, 48 hrs before the experiment) had no effect on the kidney response to the water loading in the experimental rats as compared to the control ones: changes in V, GFR, TCH2O and ENa.F% were the same. Treatment of rats with precursor of serotonin, 5-hydroxytriptophan which is known to increase the serotonin level in the brain (50 mg/kg) simultaneously with the water loading prevented the development of the diuretic reaction because of the high level of TCH2O reflected in the blood vasopressin concentration. Injection of 5-hydroxytriptophan at the maximum level of water diuresis resulted in the sharp increase in TCH2O and drop of the V. 5-hydroxytriptophan had no significant effect on the kidney response to the loading with the 2% sodium chloride solution. Under these conditions, increase in V was produced by suppression of the distal tubular sodium reabsorption, the TCH2O remaining at the high level. It is suggested that the brain serotonin manifested a significant stimulating effect on the vasopressin release from the neurohypophysis, but it is not involved in the mechanisms of suppression of its release into the blood. Serotonin seems not to interact with brain mechanisms regulating natriuretic function of the kidney.  相似文献   

9.
1. The effect of ethanol on liver fatty acid synthesis was studied in vivo in 24h-starved and ;meal-fed' rats (i.e. fed for 3h per day and not ad libitum). 2. In the fed animal (3)H(2)O was incorporated into fat at a rate of 0.46mumol of C(2) units/min per g wet wt. of liver. Administration of either ethanol (3.2g/kg) or equicaloric amounts of glucose had no effect on the rate of (3)H(2)O incorporation into lipid. 3. In the 24h-starved animal, administration of the same dose of ethanol produced an increase in the rate of (3)H(2)O incorporation from 0.06 to 0.12mumol of C(2) units/min per g fresh wt. after 3h whereas [malonyl-CoA] increased from 0.006 to 0.009mumol/g. Glucose given in amounts equicaloric to ethanol was significantly more lipogenic, increasing both the (3)H(2)O incorporation from 0.06 to 0.20mumol of C(2) units/min per g and the malonyl-CoA content from 0.006 to 0.013 mumol/g wet wt. at 3h. 4. The decrease in the redox state of free cytoplasm NAD or NADP couples or the changes in content of citrate, glucose 6-phosphate and pyruvate of liver after ethanol administration had no measurable effect on the rate of fatty acid synthesis in vivo. 5. Under the conditions of the experiments there was no significant difference, among any of the groups, in the activity of liver fatty acid synthetase measured in vitro. A double-reciprocal plot of the rate of (3)H(2)O incorporation and the total tissue malonyl-CoA concentrations showed a striking relationship. It has been concluded that the rate of fatty acid synthesis in vivo is determined principally by the V(max.) of fatty acid synthetase and the concentration of free malonyl-CoA. 6. It has also been concluded that under the conditions of the present study, the synthesis of fatty acids de novo is unlikely to be an important factor in the increased liver lipid content associated with ethanol administration.  相似文献   

10.
The characteristics of the hepatic metabolism of Sulfbromophthalein (BSP) have not been described previously for the pig. This is an important deficiency, since the pig is particularly suitable for studies of hepatic physiology and pharmacology which might apply to man. The aim of these experiments was to establish the pattern of serum clearance and biliary excretion of BSP and to determine that dose which would produce a maximal concentration in bile. A dose response and pattern of biliary excretion of BSP was studied at three dose levels administered either as a single bolus of a continuous infusion. All experiments were performed in conscious, conditioned pigs. The patterns of serum clearance and biliary excretion were found to be similar to other laboratory animals and to man. Maximary biliary concentration of BSP was achieved by a single bolus of 5-9 mumol/kg or a constant infusion of 0-59 mumol/kg/min. At these dose levels no significant alteration in bile flow was demonstrated nor was there any correlation between bile flow and BSP excretion. Supra-maximal doses produced a significant increase in bile flow and with these doses there was a significant positive correlation between bile flow and BSP excretion.  相似文献   

11.
Studies were performed in conscious, chronically catheterized male Sprague-Dawley rats to investigate the effect of administered atrial natriuretic peptide (ANP) on blood pressure, renal hemodynamics and urinary electrolyte excretion. Studies were performed on young adult (3-4 month old) rats and on aging rats (18-24 months of age). Low dose ANP (80 ng/kg/min for 60 min) had no effects on renal hemodynamics in either young or old rats and produced only a slight blood pressure reduction in young animals. No effect on urinary electrolyte excretion was evident in young rats whereas in the old animals, low dose ANP produced large rises in the rate of sodium excretion, fractional excretion of sodium and urine flow rate. A four fold higher dose of ANP evoked a moderate natriuretic and a marked antihypertensive response in young rats. Time control studies indicated that time alone had no influence on urinary sodium excretion rate, the fractional excretion of sodium or urine flow rate. These studies indicate a much enhanced sensitivity to the natriuretic effects of administered ANP by the kidneys of old rats.  相似文献   

12.
Seven goats were given medetomidine 5 μg/kg as an iv bolus injection. Venous blood samples were taken repeatedly and urine was collected continuously via a catheter up to 7h after the injection. Medetomidine caused deep clinical sedation. Base excess, pH and PCO2 in venous blood rose after medetomidine administration. There were no significant changes in plasma concentrations of sodium, calcium, magnesium, creatinine or osmolality, whereas potassium and bicarbonate concentrations increased, and phosphate and chloride decreased. Medetomidine increased plasma glucose concentration, and in 4 of 7 goats glucose could also be detected in urine. Medetomidine did not influence urine flow rate, free water clearance, bicarbonate and phosphate excretion or pH, but renal chloride, sodium, potassium, calcium, magnesium and creatinine excretion were reduced. The results suggest that the metabolic alkalosis recorded after medetomidine administration is not caused by increased renal acid excretion.  相似文献   

13.
In experiments on non-anesthetized Wistar white rats there was studied reaction of kidney to an intramuscular injection of arginine vasotocin or arginine vasopressin at doses from 0.001 to 0.05 µg/100 g body mass on the background of a water load. Water (5 ml/100 g body mass) was administered through a catheter into stomach to suppress secretion of endogenous antidiuretic hormone (ADH). In experiments with water administration, diuresis increased due to a decrease of osmotic permeability of renal tubules and to excretion of osmotically free water, with the constant clearance of sodium ions. Injection of 0.05 µg arginine vasopressin led to a marked decrease of diuresis due to a rise of reabsorption of osmotically free water without elevation of excretion of osmotically active substances. Injection of the same dose of arginine vasotocin resulted in no increase of diuresis; however, reabsorption of osmotically free water and excretion of osmotically active substances including sodium ions were more pronounced. Hence, both vasotocin and vasopressin increased osmotic permeability of the tubular epithelium, but vasotocin, unlike vasopressin, promoted reduction of reabsorption of sodium ions and their loss with urine. A suggestion is made that one of the reasons for replacement in mammals of the molecular ADH forms (vasotocin by vasopressin) was the absence of the pronounced natriuretic effect in arginine vasopressin. This was of crucial significance to preserve sodium ions in the organism, to maintain water–salt balance in animals adapted to the terrestrial life, and to provide not only osmo-, but also volumoregulation.  相似文献   

14.
Young pigs of about 25-30 kg liveweight were given intravenous infusions of a hypertonic sodium chloride solution (4-6 mol.1(-1)) at rates varying from 2-6 mmol.min-1. Such infusions resulted in a marked increase in the urine flow and in urinary sodium excretion, the size of these increases being proportional to infusion rate. Circulating vasopressin levels were also markedly increased, the size of these increases being the same as those seen in other pigs given exogenous vasopressin in amounts which were shown to increase urinary sodium excretion. This suggests that vasopressin was probably contributing to the increase in renal sodium excretion seen in those pigs given the intravenous salt loads.  相似文献   

15.
S Kanai  K Kitani  Y Sato 《Life sciences》1991,48(10):949-957
Ursodeoxycholate (UDC) has very high biliary transport maxima values (Tm) for its conjugates as well as the capability of inducing choleresis rich in bicarbonate concentration in the bile in rats. We examined in the present study whether these properties are shared by beta-muricholate (beta-MC), using beta-MC, alpha-muricholate (alpha-MC) and tauro-beta-MC (T beta-MC) in the rat. Bile samples were collected every 20 min for 2 hr in male rats under the infusion of alpha- or beta-MC (1.2 mumol/min/100g). The choleretic response was quicker in beta-MC infused rats than in rats infused with alpha-MC. Bile salt excretion rates increased radically in both experiments. However, in beta-MC infused rats, the bile salt excretion rate began to decrease after 40 min, whereas in alpha-MC infused rats, it continued to increase after 1 hr. Bile bicarbonate concentration significantly increased in beta-MC infused rats but not in alpha-MC infused rats. The Tm of T beta-MC was 2 times higher than the Tm value for taurocholate and was comparable to that of tauroursodeoxycholate (TUDC) which was previously found by the authors. The bile flow (Y, microliter/min/100 g) was significantly correlated with the bile salt excretion rate (X, mumol/min/100 g) [Y = (6.90 +/- 0.24) X + (5.5 + 1.06), n = 41, -0.98, P less than 0.01)], the slope value being higher than that found for TUDC. The results suggest that UDC and beta-MC (and their conjugates) have very similar bile secretory characteristics and may probably share the same transport system in the rat.  相似文献   

16.
Six adult, female, cynomolgus monkeys were fasted for 64 hr and then continuously infused with [6-3H]glucose to determine the rates of glucose turnover and clearance while they were also being infused with ethanol (110 mumol/min/kg), 1,3-butanediol (110 mumol/min/kg), fructose (30 mumol/min/kg) or ethanol plus fructose (110 and 30 mumol/min/kg) respectively. Both ethanol and 1,3-butanediol infusions decreased the glucose turnover rate (the steady-state input-output rate from the plasma glucose pool) and the plasma glucose concentration by halving the glucose production rate. In contrast, fructose infusions increased the glucose turnover rate and glucose concentration by increasing the glucose production rate by 20%. The plasma clearance rate of glucose was lowest when the animals were infused with ethanol plus fructose; this suggests that acetate from ethanol oxidation may have a glucose-sparing effect if normoglycemia is maintained.  相似文献   

17.
Studies were performed to determine the mechanism by which the antihypertensive agent clonidine increased urine flow. The response of the kidney has been examined in four combinations. The parameters of renal function have been compared during volume expansion by 1.5-2.0% body weight Ringer solution. In the control animals, volume expansion by 2% body weight, resulted in a slight increase in sodium excretion and urine flow. In 10 anesthetized dogs 1.0 microgram/kg/min of clonidine infused i.v. during 30 minutes (the total amount of clonidine infused was 30 micrograms/kg) decreased the arterial blood pressure from 136 +/- 13 mmHg to 127 +/- 12 mmHg and elevated urine flow from 2.95 +/- 1.65 ml/min to 4.34 +/- 1.77 ml/min while the urine osmolality diminished from 399 +/- 107 mosm/l to 265 +/- 90 mosm/l and the glomerular filtration remained constant. In 5 animals 0.1 microgram/kg/min of clonidine was infused into the left renal artery (this dose is corresponding to the renal fraction of the cardiac output) without any effects in the left kidney. 1.0 microgram/kg/min of clonidine infused directly into the left renal artery produced vasoconstriction in the ipsilateral kidney, decreased the glomerular filtration rate and the urine flow. By contrast in the right kidney the urine flow rose without hemodynamic changes, and the urine osmolality became hypoosmotic compared to the plasma. In ten dogs 1.0 microgram/kg/min of clonidine and 1 mU/kg/min of arginine-vasopressin were infused intravenously. The vasopressin infusion superimposed on the clonidine could not inhibit the increase of the urine excretion, and the fall of the urine osmolality. The results suggest that the clonidine increases the renal medullary blood flow possibly via a direct mechanism, decreases the sympathetic outflow to the kidney and via an indirect pathway, mediated by the renin-angiotensin system. The renal medullary flow increase produces a washout of the medullary osmotic gradient, and the water reabsorption diminishes.  相似文献   

18.
Oxygen consumption by hybridoma cells immobilized in 1- and 3.9-mm-diameter calcium alginate beads was measured. The entrapped cells consumed oxygen at about 10 mumol/min per 10(9) cells, regardless of the bead size and cell loading. In contrast, the same cells in suspension culture respire at specific rates of 3-8 mumol/min per 10(9) cells (depending on the cell density). The growth rate of the immobilized cells was significantly reduced, while specific antibody production was comparable to that of free cells.  相似文献   

19.
The effects of the three prostaglandins A1, E2, and F on renal blood flow, glomerular filtration rate (GFR), fluid excretion, and urinary output of Na, K, Ca, Cl, and solutes were evaluated at a dose range of 0.01 – 10 μg/min. The prostaglandins were infused into the renal artery of dogs. GFR was not significantly altered by the PGs. PGA1 increased renal blood flow by approximately of the control at 0.01 μg/min without dose dependence at higher infusion rates. It had only little effects which were not dose dependent on fluid and electrolyte output. The effects of PGE2 on renal blood flow, fluid, sodium, and chloride excretion were dose dependent with a steep slope of the dose response curve between 0.1 and 1.0 μg/min. Blood flow was increased maximally by 80 %, urine volume by more than 400 %. PGF had no effect on renal blood flow, whereas urinary output was increased to approximately the same maximal level as by E2 although ten times higher doses were needed. Potassium excretion was less influenced than the excretion of Na and Cl and osmolar clearance was less increased than urine volume by all three prostaglandins.It is concluded that if a PG is involved in the regulation of the renal fluid or electrolyte excretion it is likely to be of the PGE-type. A PGA could only be involved in regulation of renal hemodynamics, whereas PGF although effective in the kidney exerts its effects at doses too high to have physiological significance.  相似文献   

20.
The rate of flow and electrolyte concentration of parotid saliva were measured before, during and after intravenous and contralateral intracarotid infusion of KCl (0.5 mol.1(-1)) and NaCl (0.5 mol.1(-1)) at 385-625 mumol. min(-1) for 40 min into 5 sheep. In intact conscious sheep contralateral intracarotid infusion of KCl caused marked depression of salivary secretion in all experiments whereas infusion of NaCl had no consistent effect on flow. Intravenous infusion of KCl into the intact conscious sheep caused a slight depression of salivary secretion but minimum flow was significantly higher than that during intracarotid infusion. When the sheep were anaesthetized salivary flow rates were low and contralateral intracarotid infusion of KCl either had no effect on flow or caused an increase in flow. After ipsilateral cervical sympathectomy contralateral intracarotid infusion of KCl into the conscious sheep caused a marked depression of salivary flow similar to that occurring when the sheep were intact. After section of the secretomotor nerve of the gland salivary flow rates were low and contralateral intracarotid infusion of KC1 had no effect on flow. The salivary flow responses of the sheep were consistent, regardless of whether the KCl infusions were given within 24 h or 1-2 weeks after cervical sympathectomy or secretomotor nerve section. Salivary sodium concentration was negatively correlated with salivary flow in all experiments. It was concluded that potassium acted at a site located in the head but by direct action on the salivary gland. The depression of salivary secretion by hyperkalaemia resulted from a decline in neural activity in the parasympathetic secretomotor innervation of the parotid gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号