首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some properties of alginate gels derived from algal sodium alginate   总被引:1,自引:0,他引:1  
Alginic acid in soluble sodium alginate turns to insoluble gel after contact with divalent metal ions, such as calcium ions. The sodium alginate character has an effect on the alginate gel properties. In order to prepare a suitable calcium alginate gel for use in seawater, the effects of sodium alginate viscosity and M/G ratio (the ratio of D-mannuronate to L-guluronate) on the gel strength were investigated. The wet tensile strengths of gel fibers derived from high viscosity sodium alginate were higher than those from low viscosity sodium alginate. The tensile strength increased with diminishing sodium alginate M/G ratio. Among the gel fibers tested, the gel fiber obtained from a sodium alginate I-5G (1% aqueous solution viscosity = 520 mPa·s, M/G ratio = 0.6) had the highest wet tensile strength. After 13 days treatment in seawater, the wet tensile strength of the gel fiber retained 36% of the original untreated gel strength. For sodium alginates with similar viscosities, the seawater tolerance of low M/G ratio alginate was greater than that of the high M/G ratio one. This study enables us to determine a suitable calcium alginate gel for use in seawater.  相似文献   

2.
Gels have been prepared from aqueous solutions of anthracyclines by addition of salts. The gels are thixotropic and thermally reversible. They are stable for several months in the refrigerator and for long times even at room temperature. The gel-solution transition (melting) temperature depends on the concentration of the anthracycline and on the concentration and nature of the added salt. The melting has been followed by 1H-NMR. Only weak intermolecular interactions (stacking and hydrogen bonds) originate the drug network, within which the solvent is entrapped. 1H-NMR and polarimetric data suggest a stacked helical arrangement of the anthracycline molecules. The gelation process is cooperative.  相似文献   

3.
The moduli of elasticity of calcium and lead alginate gels increase with time after preparation, and the temperature dependence of the rate of syneresis suggests an activation energy of 8?12 x 104 J.mol?1 for the formation of new junctions. At zero time, a negative temperature-dependence was found for the elastic force measured at a low degree of deformation (4%). Deformation of the gels was associated with an increase in entropy and internal energy. When the calcium ions in a preformed calcium alginate gel were exchanged for lead ions, which have a higher affinity for alginate, the modulus increased due to an enhanced increase in internal energy with deformation. Reversal of the sequence of introducing the two types of ions gave the opposite effect. The data suggest that the junctions are “weak points” in the gels, and that even small deformations can cause partial rupture.  相似文献   

4.
Diffusion characteristics of calcium alginate gels.   总被引:3,自引:0,他引:3  
The diffusivity of a protein solute (bovine serum albumin) within calcium alginate gels made from sodium alginate of different guluronic acid content was determined. It was found that protein diffusion within alginate gels, prepared to be isotropic in structure, was greatest for gels prepared from sodium alginate of low guluronic acid content as opposed to those prepared from sodium alginate of high guluronic acid content. This finding was explained in terms of the difference in flexibility of the polymer backbone of the two alginates. The greater the polymer backbone flexibility, the greater the solute diffusivity within the gel.  相似文献   

5.
The effect of hydrophobic modification on the mechanical and structural characteristics of hydrophobically modified alginate (HMA) solutions and hydrogels were evaluated. The HMA systems consisted of alkyl chains, C8, grafted onto alginate backbones. With an increase in degree of substitution of hydrophobic tails, the association became stronger in solution, but same was not true for gels. The contribution of ionic crosslinking was found to be the dominant factor in determining the mechanical strength of hydrogels. Rheological measurements of 2 wt% HMA gels reveal formation of a strongly crosslinked network with an elastic modulus close to 100 kPa. Small-angle X-ray scattering (SAXS) experiments indicate that HMA assembles into a disordered structure with regions rich in the hydrophobic domain surrounded by a crosslinked hydrophilic network.  相似文献   

6.
Alginic acid gels were studied by small-angle X-ray scattering and rheology to elucidate the influence of alginate chemical composition and molecular weight on the gel elasticity and molecular structure. The alginic acid gels were prepared by homogeneous pH reduction throughout the sample. Three alginates with different chemical composition and sequence, and two to three different molecular weights of each sample were examined. Three alginate samples with fractions of guluronic acid residues of 0.39 (LoG), 0.50 (InG), and 0.68 (HiG), covering the range of commercially available alginates, were employed. The excess scattering intensity I of the alginic acid gels was about 1 order of magnitude larger and exhibited a stronger curvature toward low q compared to ionically cross-linked alginate. The I(q) were decomposed into two components by assuming that the alginic acid gel is composed of aggregated multiple junctions and single chains. Time-resolved experiments showed a large increase in the average size of aggregates and their weight fraction within the first 2 h after onset of gelling, which also coincides with the most pronounced rheological changes. At equilibrium, little or no effect of molecular weight was observed, whereas at comparable molecular weights, an increased scattering intensity with increasing content of guluronic acid residues was recorded, probably because of a larger apparent molecular mass of domains. The results suggest a quasi-ordered junction zone is formed in the initial stage, followed by subsequent assembling of such zones, forming domains in the order of 50 A. The average length of the initial junction zones, being governed by the relative fraction of stabilizing G-blocks and destabilizing alternating (MG) blocks, determines the density of the final random aggregates. Hence, high-G alginates give alginic acid gels of a higher aggregate density compared to domains composed of loosely packed shorter junction zones in InG or LoG system.  相似文献   

7.
The vacuum ultraviolet circular dichroism of alginate solutions, gels and solid films is reported. Two previously observed bands at ~215 and ~203 nm are assigned to n → π1 transitions of carboxy groups under different conditions of local environment. Three bands not previously observed are at ~185 nm, assigned to carboxy π → π1 transitions, and at ~169 and ~149 nm, assigned to transitions of the polymer backbone. In the course of the sol (Na+)-gel (Ca2+), the sol (Na+-film (Na+) and the gel (Ca2+)-film (Ca2+) transitions, intensity changes are observed in both the low energy and high energy bands. The c.d. changes during the three transitions differ in magnitude, but are qualitatively the same, from which we conclude that the chain conformations in the gel and films are similar, and that the principal spectral changes have their origin in perturbation of chromophores by site-bound cations.  相似文献   

8.
Alginate gels formed by diffusion of calcium ions into solutions of sodium alginate were found to exhibit optical anisotropy depending on preparation conditions. When observed under crossed nicols, the anisotropic alginate gels showed a birefringence pattern which is characteristic of radial orientation of polymer chains. Calcium alginate gels were prepared from different concentrations of sodium alginate and calcium ion, and the conditions for formation of the anisotropic gels were determined. The gel-formation process was measured by monitoring the development of the birefringent layer and was compared with the model in which the diffusion of calcium ions dominates gel formation.  相似文献   

9.
Charged polysaccharides often form hydrogels in the presence of cations. In many applications the polymer network density distribution and associated physical properties are of major practical importance. Depending on the detailed conditions, the resulting gel density may vary from fully homogeneous to strongly inhomogeneous. We have established a simple set of coupled chemical reaction–diffusion equations to model the gelling process of calcium-induced alginate gels. The necessary algorithms for numerical solution of the resulting simultaneous parabolic differential equations have been developed both for one-dimensional models and three-ldimensional models with cylindrical or spherical symmetry. The algorithms make use of the Crank–Nicolson implicit finite difference method. The results of the numerical analyses of the gel formation can be divided into several different regimes depending on the physical and chemical parameters of the alginates and the cations. The numerical results are in good agreements with reported experimental results. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
11.
In the extraction of alginate from brown seaweeds, the acid pre-extraction treatment has been considered by many authors as an essential step because it makes the alginate more readily soluble in an alkaline solution. At pilot plant level, extractions were made (i) using formalin treatment prior to the acid pre-extraction treatment (ii) using different acid treatments so the calcium ions exchanged varied from 83% to 4%. The use of formalin treatment gave a product with less color. During the acid pre-extraction treatment, it was possible to reduce the calcium exchanged from 33.4% to almost zero with a maximum reduction in alginate yield of 7%. The degree of acid treatment was positively correlated to calcium exchanged and yield but negatively correlated with alginate viscosity. Using strong acid conditions the viscosity was 168 mPa s, while mild acid conditions produced an alginate with 623 mPa s. The direct extraction from calcium alginate to sodium alginate is possible because strong alkaline conditions were used, pH 10 at 80 °C for two hours and with a low water volume. The best pre-extraction treatment to obtain an alginate with high viscoity is to hydrate the alga with 0.1% formalin overnight, then wash the alga once with hydrochloric acid at pH 4 using a batch system with continuous agitation during 15 min. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The influence of added salts on the dynamic viscoelastic properties are investigated for aqueous solutions of alginates that have various molecular weights and mannuronate/guluronate (M/G) ratios. The dynamic moduli of the systems increase with increasing concentration of the added salt in the low-frequency region. The effect is notable in the order of KCl < NaCl < MgCl2 ? CaCl2. The values of the dynamic moduli in the rubbery plateau are independent of the addition of the salts, irrespective of the M/G ratio of the alginate. These facts strongly suggest that the structure that is formed by the interaction between the alginates and the metal ions does not work as cross-linking points but as heterogeneous relaxation units having a relatively long relaxation time from a rheological viewpoint.  相似文献   

13.
14.
The enzyme-catalyzed gel-sol transition of calcium-alginate obtained by internal gelling strategy with the help of an entrapped alginate lyase is described. We show that alginate molecules and enzyme-produced oligoalginates shorten the gel time of physical gelatin gels (5% and 1.5%), probably due to local protein concentration increase. Interpenetrated networks composed of calcium-alginate and of gelatin were obtained only if elongation of gelatin helices inside a pre-existing calcium-alginate network could occur and only for low gelatin concentration (1.5%). The physical gelatin network is almost reversible inside the alginate one. Both networks can be obtained in the presence of alginate lyase, but gel-sol transition of calcium-alginate cannot be obtained in the presence of gelatin.  相似文献   

15.
We report the effects of oxidative stress generated by low-intensity u.v. irradiation (366 and 254 nm), dialysis against ascorbate and isolated stimulated neutrophils on some physicochemical properties of caeruloplasmin. Low-intensity u.v. irradiation resulted in a loss of ferroxidase activity and 610 nm absorption, changes previously reported to occur during storage and manipulation of caeruloplasmin. These alterations were found to correspond to aggregation of the protein, induction of visible fluorescence (excitation, 360 nm; emission, 454 nm), changes in c.d. spectra which were indicative of alterations in protein conformation, loss of half-cystine, tryptophan and tyrosine content and loss immunoreactivity. The changes in the far-u.v. c.d. spectrum of caeruloplasmin were more pronounced than those observed for u.v.-irradiated IgG. Similar c.d. changes and induction of fluorescence were observed following dialysis of caeruloplasmin against ascorbate or exposure to stimulated neutrophils. It is concluded that the lability of caeruloplasmin may arise from oxidative modification, in addition to the previously described susceptibility of this protein to proteolysis.  相似文献   

16.
Rheological properties of pullulan, sodium alginate and blend solutions were studied at 20 °C, using steady shear and dynamic oscillatory measurements. The intrinsic viscosity of pure sodium alginate solution was 7.340 dl/g, which was much higher than that of pure pullulan (0.436 dl/g). Pure pullulan solution showed Newtonian behavior between 0.1 and 100 s−1 shear rate range. However, increasing sodium alginate concentration in pullulan-alginate blend solution led to a shear-thinning behavior. The effect of temperature on viscosities of all solutions was well-described by Arrhenius equation. Results from dynamical frequency sweep showed that pure sodium alginate and blend solutions at 4% (w/w) polymer concentration were viscoelastic liquid, whereas the pure pullulan exhibited Newtonian behavior. The mechanical properties of pure sodium alginate and pullulan-alginate mixture were analyzed using the generalized Maxwell model and their relaxation spectra were determined. Correlation between dynamic and steady-shear viscosity was analyzed with the empirical Cox-Merz rule.  相似文献   

17.
The temperature dependence of the elastic modulus for alginate gels was studied using two different gel systems: covalently crosslinked Na-alginate gels and in-situ prepared Ca-alginate gels. The modulus of physically crosslinked gels showed a complex behaviour. The temperature coefficient of the modulus of covalently crosslink gels changed from positive for the lowest crosslinked gels to negative for the highest crosslinked gels. This suggests a change from rubberlike to enthalpy-driven elasticity with an increasing degree of crosslinking for these gel networks.  相似文献   

18.
19.
The morphologies of several ionotropic alginate hydrogels and aerogels were investigated by SAXS according to the nature of the divalent metal cation (Mn(2+), Co(2+), Zn(2+), Cu(2+)) and the guluronic fraction of the alginate. All alginate hydrogel and aerogel samples show isotropic small-angle X-ray scattering. Gelation results from cooperative associations of cations and chain segments and yields different nanostructures, that is, nanofibrillar morphology or multiple junction morphology, according to cation type and eventually mannuronic/guluronic ratio. Therefore, Mn and Cu gels present the same morphology whatever the guluronic ratio, whereas Co and Zn gels yield different nanostructures. In the size range investigated by SAXS (~10-200 ?), the structure of aerogels obtained by CO(2) supercritical drying is found to be inherited from the morphology of the parent hydrogel whatever the initial structural regime.  相似文献   

20.
Glucose oxidase, invertase, and amyloglucosidase were entrapped in calcium alginate gels as concanavalin A complexes in order to prevent the leaching out of the enzymes from the porous matrix. The free as well as the gel-entrapped concanavalin A-glycoenzyme complexes exhibited a relatively high effectiveness factor, eta, indicating good accessibility to the substrates. Concanavalin A-invertase complex exhibited marked broadening of pH-activity and temperature-activity profiles and was highly resistant to temperature inactivation even after entrapment in the alginate beads. It was possible to entrap considerable quantities of invertase as concanavalin A complex in the beads without a marked decrease in eta. A column containing crosslinked concanavalin A-invertase complex entrapped in alginate beads retained the ability to completely hydrolyze 1M sucrose even after continuous operation for over four months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号