首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
NMR studies of the interaction of chromomycin A3 with small DNA duplexes I   总被引:2,自引:0,他引:2  
1H and 31P NMR spectral analysis of a chromomycin/d(ATGCAT)2 complex provides strong evidence for a nonintercalative mode of drug binding. Investigation of the imino proton region of the duplex suggests a protection of one of the two guanine imino protons from fast exchange with the bulk water up to at least 45 degrees C by the drug. Subsequent one-dimensional nuclear Overhauser enhancement experiments place the exchangeable chromomycin chromophoric hydroxyl proton less than 0.45 nm from this guanine imino proton and the chromophore 7-methyl less than 0.45 from the internal thymine 6-proton and/or the guanine 8-proton. 1H two-dimensional NMR reveals that the duplex retains a right-handed B conformation but there are distortions at the TGC region of one chain and large deviations in the chemical shift of protons relative to the uncomplexed duplex in the other chain in the same TGC region. The data suggest that the chromomycin chromophore is oriented such that the hydrophilic side of the ring system is proximal to the helix center in the major groove near the TG region while the aromatic side of the ring is oriented away from the helix but is partially protected from the solvent by the aliphatic chain, which bends back over the two aromatic protons. Changes in the 31P spectrum of the duplex on binding of the drug are different from the effect of either actinomycin or netropsin on nucleic acid fragments.  相似文献   

2.
The interaction of chromomycin A3 with the oligodeoxyribonucleotides 1, d(ATGCAT), 2, d(ATCGAT), 3, d(TATGCATA), and 4, d(ATAGCTAT), has been investigated by 1H and 31P NMR. In the presence of Mg2+, chromomycin binds strongly to the three GC-containing oligomers 1, 3, and 4 but not to the CG-containing oligomer 2. The proton chemical shift changes for 1 and 3 are similar, and these DNA duplexes appear to bind with a stoichiometry of 2 drugs:1 Mg2+:1 duplex. The same stoichiometry of 2 drugs:1 duplex is confirmed with 4; however, proton chemical shift changes differ. An overall C2 symmetry is exhibited by the drug complex with 1, 3, and 4. At a molar ratio of 2.0 (drugs:duplex), no free DNA proton NMR signals remain. Two-dimensional nuclear Overhauser exchange spectroscopy (NOESY) of the saturated chromomycin complex with 1 and 3 positions both chromomycinone hydroxyls and the E carbohydrates in the minor groove and provides evidence suggesting that the B carbohydrates lie on the major-groove side. This is supported by several dipolar coupling cross-peaks between the drug and the DNA duplex. Drug-induced conformational changes in duplex 1 are evaluated over a range of NOESY mixing times and found to possess some characteristics of both B-DNA and A-DNA, where the minor groove is wider and shallower. A widening of the minor groove is essential for the DNA duplex to accommodate two drug molecules. This current minor-groove model is a substantial revision of our earlier major-groove model [Keniry, M.A., Brown, S.C., Berman, E., & Shafer, R.H. (1987) Biochemistry 26, 1058-1067] and is in agreement with the model recently proposed by Gao and Patel [Gao, X., & Patel, D. J. (1989a) Biochemistry 28, 751-762].  相似文献   

3.
P Aich  R Sen  D Dasgupta 《Biochemistry》1992,31(11):2988-2997
Chromomycin A3 is an antitumor antibiotic which blocks macromolecular synthesis via reversible interaction with DNA template only in the presence of divalent metal ions such as Mg2+. The role of Mg2+ in this antibiotic-DNA interaction is not well understood. We approached the problem in two steps via studies on the interaction of (i) chromomycin A3 and Mg2+ and (ii) chromomycin A3-Mg2+ complex(es) and DNA. Spectroscopic techniques such as absorption, fluorescence, and CD were employed for this purpose. The results could be summed up in two parts. Absorption, fluorescence, and CD spectra of the antibiotic change upon addition of Mg2+ due to complex formation between them. Analysis of the quantitative dependence of change in absorbance of chromomycin A3 (at 440 nm) upon input concentration of Mg2+ indicates formation of two types of complexes with different stoichiometries and formation constants. Trends in change of fluorescence and CD spectroscopic features of the antibiotic in the presence of Mg2+ at different concentrations further corroborate this result. The two complexes are referred to as complex I (with 1:1 stoichiometry in terms of chromomycin A3:Mg2+) and complex II (with 2:1 stoichiometry in terms of chromomycin A3:Mg2+), respectively, in future discussions. The interactions of these complexes with calf thymus DNA were examined to check whether they bind differently to the same DNA. Evaluation of binding parameters, intrinsic binding constants, and binding stoichiometry, by means of spectrophotometric and fluorescence titrations, shows that they are different. Distinctive spectroscopic features of complexes I and II, when they are bound to DNA, also support that they bind differently to the above DNA. Measurement of thermodynamic parameters characterizing their interactions with calf thymus DNA shows that complex I-DNA interaction is exothermic, in contrast to complex II-DNA interaction, which is endothermic. This feature implies a difference in the molecular nature of the interactions between the complexes and calf thymus DNA. These observations are novel and significant to understand the antitumor property of the antibiotic. They are also discussed to provide explanations for the earlier reports that in some cases appeared to be contradictory.  相似文献   

4.
5.
Chromomycin A3 (CHR) binding to the duplex d(CAAGTCTGGCCATCAGTC).d(GACTGATGGCCAGACTTG) has been studied using quantitative footprinting methods. Previous NMR studies indicated CHR binds as a dimer in the minor groove. Analysis of autoradiographic spot intensities derived from DNase I cleavage of the 18-mer in the presence of various amounts of CHR revealed that the drug binds as a dimer to the sequence 5'-TGGCCA-3',3'-ACCGGT-5' in the 18-mer with a binding constant of (2.7 +/- 1.4) x 10(7) M-1. Footprinting and fluorescence data indicate that the dimerization constant for the drug in solution is approximately 10(5) M-1. Since it has been suggested that CHR binding alters DNA to the A configuration, quantitative footprinting studies using dimethyl sulfate, which alkylates at N-7 of guanine in the major groove, were also carried out. Apparently, any drug-induced alteration in DNA structure does not affect cleavage by DMS enough to be observed by these experiments.  相似文献   

6.
The interactions of the antitumor antibiotics, chromomycin A3, with a variety of metal cations in the pH range of 3.0–8.5 were systematically studied by CD, absorption, and 1H-nmr spectroscopies. Results were compared with those obtained in the presence of increasing amounts of calf thymus DNA. The negatively charged chromomycin A3, pKa 6.3, forms aggregates that become ordered and smaller in size, in the presence of variety of metal cations. Spectrophotometric titrations have shown that binding of the neutral drug to DNA at pH 4.5 does not require divalent cations, although the strength of the binding is greatly enhanced in their presence. At higher pH values (> 7.0) and low DNA/drug ratio ( > 20), the metal cations are necessary to induce the binding between chromomycin A3 and DNA. At higher DNA/drug ratios (> 100: 1), an appreciable proportion of the drug is bound even in the absence of divalent cations. Its binding affinity to the DNA is enhanced in the presence of these cations and at low pH values. Therefore, we conclude that chromomycin A3 binds in two related modes, in the presence and in the absence of divalent cations. The spectral data accumulated indicate the metal cation is involved in the binding of the drug to the DNA by forming a drug–metal–DNA ternary complex.  相似文献   

7.
Small molecules with DNA-binding affinity within the minor groove have become of great interest. In this study, new DNA-binding ligands were designed to mimic Chromomycin A(3) (CRA(3)), which contains a hydroxylated tetrahydroanthracene chromophore substituted with di and trisaccharides. The trisaccharide part of CRA(3) that is supposed to contribute to form the Mg(2+)-coordinated dimer was expected to be mimicked by a simple alkyl group attached to the chromophore part as new model compounds. The present study has successfully demonstrated that the new ligands form Mg(2+)-coordinated dimer complexes to exhibit DNA-binding affinity.  相似文献   

8.
M Kam  R H Shafer  E Berman 《Biochemistry》1988,27(10):3581-3588
A conformational analysis and a complete assignment of the nonexchangeable proton resonances of chromomycin A3, dechromose-A chromomycin A3, and deacetylchromose-B chromomycin A3 were carried out in organic solvents. The resulting conformation in methanol has the three side chains of chromomycin A3 fully extended, away from one another and from the aglycon. In dichloromethane on the other hand, the drug was shown to adopt a highly compact conformation in which most of the 26 oxygen atoms in the molecule point out toward the solvent. The two carbohydrate side chains extend parallel to each other on the same side of the aglycon. Two intramolecular nuclear Overhauser enhancement contacts have been observed between different sugar units on these side chains, indicating close proximity for these moieties. In addition, the aliphatic side chain is folded toward the aglycon, parallel to the two oligosaccharide side chains. The overall conformation has a wedge-like shape with the two phenoxy groups exposed at the pointed edge. The presence of some exchange cross-peaks in the NOESY spectra suggests the presence of intramolecular hydrogen bonds that probably help to maintain the compact conformation. The derivatives of chromomycin A3 have qualitatively similar conformations, though their respective conformations are not as compact as the parent drug. The significance of these results is discussed in terms of a model of chromomycin A3 binding to DNA in the major groove.  相似文献   

9.
10.
The interaction of bleomycin A2 and Zn(II)-bleomycin A2 with the oligonucleotide (dC-dG)3 has been monitored by nuclear magnetic resonance spectroscopy. Binding of the drug to the oligonucleotide is indicated by an upfield shift of the bithiazole proton resonances consistent with partial intercalation of this group between base pairs. The effect of temperature and ionic strength on the binding of both free bleomycin and the Zn(II) complex has been studied. Consistent with earlier studies on polynucleotides, the rate of exchange between the free drug and the drug-oligonucleotide complex is rapid on the 1H NMR chemical shift time scale. Binding of the oligonucleotide induced changes in resonances assigned to protons in the metal-binding region of Zn(II)-bleomycin. Intermolecular nuclear Overhauser effect enhancements between bleomycin and the oligonucleotide have not been detected.  相似文献   

11.
12.
The binding of mithramycin A to the d(A1T2G3C4A5T6) duplex was investigated by 1H NMR and found to be similar to that of its analogue chromomycin A3. In the presence of Mg2+, mithramycin binds strongly to d(ATGCAT)2. On the basis of the two-dimensional NOESY spectrum, the complex formed possesses C2 symmetry at a stoichiometry of two drugs per duplex (2:1) and is in slow chemical exchange on the NMR time scale. NOESY experiments reveal contacts from the E-pyranose of mithramycin to the terminal and nonterminal adenine H2 proton of DNA and from the drug hydroxyl proton to both G3NH2 protons, C4H1' proton, and A5H1' proton. These data place the drug chromophore and E pyranose on the minor groove side of d(ATGCAT)2. NOE contacts from the A-, B-, C-, and D-pyranoses of mithramycin to several deoxyribose protons suggest that the A- and B-rings are oriented along the sugar-phosphate backbone of G3-C4, while the C- and D-rings are located along the sugar-phosphate backbone of A5-T6. These drug-DNA contacts are very similar to those found for chromomycin binding to d(ATGCAT)2. Unlike chromomycin, the NOESY spectrum of mithramycin at the molar ratio of one drug per duplex reveals several chemical exchange cross-peaks corresponding to the drug-free and drug-bound proton resonances. From the intensity of these cross-peaks and the corresponding diagonal peaks, the off-rate constant was estimated to be 0.4 s-1. These data suggest that the exchange rate of mithramycin binding to d(ATGCAT)2 is faster than that of chromomycin.  相似文献   

13.
R E Klevit  D E Wemmer  B R Reid 《Biochemistry》1986,25(11):3296-3303
High-resolution NMR techniques have been used to examine the structural and dynamical features of the interaction between distamycin A and the self-complementary DNA dodecamer duplex d-(CGCGAATTCGCG)2. The proton resonances of d(CGCGAATTCGCG)2 have been completely assigned by previous two-dimensional NMR studies [Hare, D. R., Wemmer, D. E., Chou, S. H., Drobny, G., & Reid, B. R. (1983) J. Mol. Biol. 171, 319-336]. Addition of the asymmetric drug molecule to the symmetric dodecamer leads to the formation of an asymmetric complex as evidenced by a doubling of DNA resonances over much of the spectrum. In two-dimensional exchange experiments, strong cross-peaks were observed between uncomplexed DNA and drug-bound DNA resonances, permitting direct assignment of many drug-bound DNA resonances from previously assigned free DNA resonances. Weaker exchange cross-peaks between formerly symmetry related DNA resonances indicate that the drug molecule flips head-to-tail on one duplex with half the frequency at which it leaves the DNA molecule completely. In experiments performed in H2O, nuclear Overhauser effects (NOEs) were observed from each drug amide proton to an adenine C2H and a pyrrole H3 ring proton. In two-dimensional nuclear Overhauser experiments performed on D2O solutions, strong intermolecular NOEs were observed between each of the three pyrrole H3 resonances of the drug and an adenine C2H resonance, with weaker NOEs observed between the drug H3 resonances and C1'H resonances. The combined NOE data allow us to position the distamycin A unambiguously on the DNA dodecamer, with the drug spanning the central AATT segment in the minor groove.  相似文献   

14.
15.
16.
The interaction between puerarin and β-cyclodextrin (CD) has been studied in D2O, H2O/acetone-d 6, acetone-d 6 and DMSO-d 6 solutions by 1H NMR spectroscopy. The NMR data obtained from hydroxy protons indicate that the formation of the inclusion complex between the two molecules is not stabilized by strong hydrogen bond interactions. The sugar part of puerarin as well as the A ring are outside the β-CD cavity while the B and C rings are located inside the cavity and the interaction is mainly stabilized by hydrophobic interactions. In DMSO at 30°C and in acetone-d 6/H2O at temperature below −5°C, doubling of some signals indicated that, in these solvent systems, free rotation of the C-glycosyl bond was restricted due to the steric hindrance between the phenolic hydroxy group at C-7 and the bulky sugar moiety at C-8. In acetone, fast exchange of phenolic protons on the NMR timescale was observed, showing the effect of the solvent on the hindered rotation.  相似文献   

17.
This review focuses on the recent developments in the study of drug interactions with biological membranes and membrane-associated proteins using nuclear magnetic resonance (NMR) spectroscopy and other spectroscopic techniques. Emphasis is placed on a class of low-affinity neurological agents as exemplified by volatile general anesthetics and structurally related compounds. The technical aspects are reviewed of how to prepare membrane-mimetic systems and of NMR approaches that are either in current use or opening new prospects. A brief literature survey covers studies ranging from drug distribution in simplified lipid matrix to specific drug interaction with neuronal receptors reconstituted in complicated synthetic membrane systems.  相似文献   

18.
Spectroscopic studies of interaction of chlorobenzylidine with DNA   总被引:5,自引:0,他引:5  
Zhong W  Yu JS  Huang W  Ni K  Liang Y 《Biopolymers》2001,62(6):315-323
Electronic absorbance and fluorescence titrations are used to probe the interaction of chlorobenzylidine with DNA. The binding of chlorobenzylidine to DNA results in hypochromism, a small shift to a longer wavelength in the absorption spectra, and emission quenching in the fluorescence spectra. These spectral characteristics suggest that chlorobenzylidine binds to DNA by an intercalative mode. This conclusion is reinforced by fluorescence polarization measurements. Scatchard plots constructed from fluorescence titration data give a binding constant of 1.3 x 10(5) M(-1) and a binding site size of 10 base pairs. This indicates that chlorobenzylidine has a high affinity with DNA. The intercalative interaction is exothermic with a Van't Hoff enthalpy of -143 kJ/mol. This result is obtained from the temperature dependence of the binding constant. The interaction of chlorobenzylidine with DNA is affected by the pH value of the solution. The binding constant has its maximum at pH 3.0. Upon binding to DNA, the fluorescence from chlorobenzylidine is quenched efficiently by the DNA bases and the fluorescence intensity tends to be constant at high concentrations of DNA when the binding is saturated. The Stern-Volmer quenching constant obtained from the linear quenching plot is 1.6 x 10(4) M(-1) at 25 degrees C. The measurements of the fluorescence lifetime and the dependence of the quenching constant on the temperature indicate that the fluorescence quenching process is static. The fluorescence lifetime of chlorobenzylidine is 1.9 +/- 0.4 ns.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号