首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extra- and intracellular Escherichia coli hemolysin expressed by two cloned hly determinants, both under the control of the activator element hlyR, were analyzed. One determinant carried all four hly genes (hlyC, hlyA, hlyB, and hlyD), whereas the other carried only the two genes (hlyC and hlyA) required for synthesis of active hemolysin but not those essential for its secretion. It was shown that the total amounts of HlyA protein and of hemolytic activity are similar in both cases in logarithmically growing cultures. The E. coli strain carrying the complete hly determinant released most hemolysin into the media and accumulated very little HlyA intracellularly. The active extracellular hemolysin (HlyA*) was inactivated in the stationary phase without degradation of the HlyA protein. In contrast, the hemolysin which accumulated intracellularly in the E. coli strain carrying hlyA and hlyC only was proteolytically degraded at the end of the logarithmic growth phase. Immunogold labeling indicates that active intracellular HlyA bound preferentially to the inner membrane, whereas that part of the extracellular HlyA which remained cell-bound was located exclusively at the cell surface. It was shown by fluorescence-activated cell sorter analysis that active extra- and intracellular HlyA* bound with similar efficiency to erythrocytes, whereas hemolytically inactive HlyA protein did not bind to these target cells.  相似文献   

2.
Hemolysin (HlyA) from Escherichia coli containing the hlyCABD operon separated from the nonhemolytic pro-HlyA upon two-dimensional (2-D) polyacrylamide gel electrophoresis. The migration distance indicated a net loss of two positive charges in HlyA as a result of the HlyC-mediated activation (modification). HlyA activated in vitro in the presence of [U-14C]palmitoyl-acyl carrier protein comigrated with in vivo-activated hemolysin on 2-D gels and was specifically labelled, in agreement with the assumption that the activation is accomplished in vitro and in vivo by covalent fatty acid acylation. The in vivo-modified amino acid residues were identified by peptide mapping and 2-D polyacrylamide gel electrophoresis of mutant and truncated HlyA derivatives, synthesized in E. coli in the presence and absence of HlyC. These analyses indicated that the internal residues Lys-564 and Lys-690 of HlyA, which have recently been shown by others to be fatty acid acylated by HlyC in vitro, are also the only modification sites in vivo. HlyA activated in E. coli was quantitatively fatty acid acylated at both sites, and the double modification was required for wild-type hemolytic activity. Single modifications in mutant and truncated HlyA derivatives suggested that both lysine residues are independently fatty acid acylated by a mechanism requiring additional sequences or structures flanking the corresponding acylation site. The intact repeat domain of HlyA was not required for the activation. The pore-forming activities of pro-HlyA and singly modified HlyA mutants in planar lipid bilayer membranes suggested that the activation is not essential for transmembrane pore formation but rather required for efficient binding of the toxin to target membranes.  相似文献   

3.
HlyC, hemolysin-activating lysine acyltransferase, catalyzes the acylation (from acyl-ACP) of Escherichia coli prohemolysin (proHlyA) on the epsilon-amino groups of specific lysine residues, Lys564 and Lys690 of the 1024-amino acid primary structure, to form hemolysin (HlyA). The amino acid sequences flanking the two acylation sites are not homologous except that each has a glycine residue immediately preceding the lysine which is acylated; there are, however, numerous GK sequences throughout proHlyA that are not acylation sites. The substrate specificity of acylation was examined. ProHlyA-derived structures, altered by substantial deletions and separation of the acylation sites into two different peptides and site-directed mutation analyses of acylation sites, often served as internal protein acylation substrates, and the kinetics of the acylations were measured. The two sites of acylation of proHlyA functioned independently of one another with HlyC; there did not appear to be a common HlyC binding site or processivity of the enzyme between the sites. Acyl-HlyC was likely the enzyme form that interacted with the final acylation substrate. In a variety of constructs, the two acylation sites had similar K(m) values, but their V(max) values and catalytic efficiencies as substrates differed. Internal protein acylation was inhibited by specific small peptides mimicking the primary structure of each acylation site except that the crucial lysines were replaced with arginines; similar small peptides containing the crucial lysine, however, were not acylated.  相似文献   

4.
Mutational analysis of the carboxy-terminal region of Escherichia coli HlyC was performed by site-directed mutagenesis. Replacement of residue Val-127 or Lys-129 reduced the activity of HlyC to about 30 or 60%, respectively, of that of the wild type, while replacement of Gly-128 reduced the activity to less than 1% of the wild-type level. Complete inactivation of HlyC was caused by a double mutation, replacement of Gly-128 with valine and of Lys-129 with isoleucine. Analysis of culture supernatants from mutants with reduced hemolytic activity by two-dimensional gel electrophoresis revealed the production and simultaneous secretion of nonacylated, monoacylated, and fully acylated HlyA forms, demonstrating impairment of the acylation reaction, possibly due to a decreased affinity of HlyC for the individual HlyA acylation sites.  相似文献   

5.
HlyA is a toxin secreted by uropathogenic Escherichia coli strains. HlyA belongs to the repeats in the toxin protein family and needs (i) a posttranslational, fatty acylation at two internal lysines by the acyltransferase HlyC and (ii) extracellular ion binding to achieve its active conformation. Both processes are not fully understood and experiments are often limited due to the low amounts of protein available. Here, we present an optimized purification protocol for the proteins involved in HlyA activation as well as a quick and nonradioactive assay for in vitro HlyA acylation. These may simplify future experiments, e.g., activity scanning and characterization of HlyA or HlyC mutants as demonstrated with single and double HlyA lysine mutants.  相似文献   

6.
alpha-Hemolysin (HlyA) is a secreted protein virulence factor observed in certain uropathogenic strains of Escherichia coli. The active, mature form of HlyA is produced by posttranslational modification of the protoxin that is mediated by acyl carrier protein and an acyltransferase, HlyC. We have now shown using mass spectrometry that these modifications, when observed in protein isolated in vivo, consist of acylation at the epsilon-amino groups of two internal lysine residues, at positions 564 and 690, with saturated 14- (68%), 15- (26%), and 17- (6%) carbon amide-linked side chains. Thus, HlyA activated in vivo consists of a heterogeneous family of up to nine different covalent structures, and the substrate specificity of the HlyC acyltransferase appears to differ from that of the closely related CyaC acyltransferase expressed by Bordetella pertussis.  相似文献   

7.
Active and inactive forms of hemolysin (HlyA) from Escherichia coli   总被引:11,自引:0,他引:11  
The HlyA protein (Mr 110 kDa) which is the gene product of the hlyA gene encoded by the hemolysin determinant of Escherichia coli (Goebel, W. & Hedgpeth, J. (1982) J. Bacteriol. 151, 1290-1298) was observed to accumulate in the culture supernatant (in the presence of the three other Hly proteins HlyC, B and D) throughout the active growth cycle. However, the amount of extracellular HlyA protein did not correlate with the external hemolytic activity, which declined when the cells entered the stationary phase. External hemolytic activity was highly sensitive to phospholipase C and to ultrasonication. The size of the HlyA protein on SDS-PAGE was not changed by these treatments although the hemolytic activity was entirely abolished. On a polyacrylamide gel containing 2M urea but only 0.1% SDS hemolytically active HlyA migrated slightly ahead of the inactive HlyA suggesting that HlyA is more negatively charged than HlyA. Active hemolysin from unconcentrated hemolytic supernatants migrated on Sephacryl S-400 and on glycerol gradients as large complexes. Analysis of the hemolytically active fractions on SDS-PAGE yielded in both cases only HlyA (110 kDA) as major protein. An internal hemolytic activity appeared in most Escherichia coli K-12 strains in the stationary phase which was independent of the presence of HlyA or any other Hly gene product. This hemolytic activity which reached in some strains about 10% of the level determined by the hly genes was sensitive to proteinase K and disappeared upon shift of the cells to the logarithmic phase.  相似文献   

8.
9.
HlyC, hemolysin-activating lysine-acyltransferase, catalyses the acylation (from acyl-acyl carrier protein [ACP]) of Escherichia coli prohemolysin (proHlyA) on the epsilon-amino groups of specific lysine residues, 564 and 690 of the 1024 amino acid primary structure, to form hemolysin (HlyA). Isothermal titration calorimetry was used to measure the thermodynamic properties of the protein acylation of proHlyA-derived structures, altered by substantial deletions and separation of the acylation sites into two different peptides and site directed mutation analyses of acylation sites. Acylation of proHlyA-derived proteins catalyzed by HlyC was overall an exothermic reaction driven by a negative enthalpy. The reaction, whose kinetics are compatible to a ping-pong mechanism, is composed of two partial reactions. The first, the formation of an acyl-HlyC intermediate, was entropically driven, most likely by noncovalent complex formation between acyl-ACP and HlyC; enthalpy-driven acyl transfer followed, resulting in acyl-HlyC and ACPSH product formation. The second partial reaction was an energetically unfavorable acyl transfer from acyl-enzyme intermediate to the final acyl acceptor, a proHlyA derivative. Overall the acylation of proHlyA-derived proteins catalyzed by HlyC was driven by the energetics of the acyl enzyme intermediate reaction. Of the two acylation sites, intactness of the site equivalent to proHlyA K564 was more important for acylation reaction thermodynamic stability.  相似文献   

10.
Transcriptional organization of the Escherichia coli hemolysin genes   总被引:39,自引:10,他引:39       下载免费PDF全文
  相似文献   

11.
The hemolysin toxin (HlyA) is secreted across both the cytoplasmic and outer membranes of pathogenic Escherichia coli and forms membrane pores in cells of the host immune system, causing cell dysfunction and death. The processes underlying the interaction of HlyA with the bacterial and mammalian cell membranes are remarkable. Secretion of HlyA occurs without a periplasmic intermediate and is directed by an uncleaved C-terminal targetting signal and the HlyB and HlyD translocator proteins, the former being a member of a transporter superfamily central to import and export of a wide range of substrates by prokaryotic and eukaryotic cells. The separate process by which HlyA is targetted to mammalian cell membranes is dependent upon fatty acylation of a non-toxic precursor, proHlyA. This is achieved by a novel mechanism directed by the activator protein HlyC, which binds to an internal proHlyA recognition sequence and provides specificity for the transfer of fatty acid from cellular acyl carrier protein.  相似文献   

12.
In this paper the DNA sequence of the cloned hlyC gene from E. coli 2001 is presented. The gene encodes a protein of 20 kDa which is able to activate the 107 kDa polypeptide encoded by hlyA. This gives rise to a haemolytically active protein which differs from the inactive form in stability and by its migration when analysed by polyacrylamide gel electrophoresis under non-denaturing conditions. We also show that the inactive form is secreted in the presence of the transport functions hlyB and hlyD. This result rules out any role for the hlyC gene product in the transport of HlyA across the inner membrane.  相似文献   

13.
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins. Extracellular protein secretion has the advantage of reducing protein aggregation and simplifying downstream purification. The introduction of five rare codons in a specific region of the alpha-hemolysin (hlyA) gene previously was shown to result in eightfold improvement in secretion of HlyA via the hemolysin (Type-I) pathway. Here we investigate the biological basis for the observed phenomenon that translation rate of HlyA protein may be related to the ability to secrete higher levels of HlyA via the Type-I pathway. A detailed comparative analysis between a hypersecreter mutant strain (hly-slow) and a control strain (hly-parent) shows a significant decrease (by approximately 50%) in the intracellular level of HlyA protein in the hly-slow strain relative to the hly-parent strain. Nearly 100% of the intracellular HlyA protein exists in the inclusion body fraction in both the strains. These results demonstrate the importance of synonymous codon changes in the context of improving HlyA secretion yield via Type-I pathway and further illustrate that production of high levels of secreted proteins appears to require a balance between translation and secretion rate.  相似文献   

14.
Escherichia coli alpha-hemolysin (HlyA) is a protein exotoxin that binds and lyses eukaryotic cell and model membranes in the presence of calcium. Previous studies have been able to distinguish between reversible toxin binding to the membrane and irreversible insertion into the lipid matrix. Membrane lysis occurs as the combined effect of protein insertion plus a transient perturbation of the membrane bilayer structure. In the past, insertion and bilayer perturbation have not been experimentally dissected. This has now been achieved by studying HlyA penetration into lipid monolayers at the air-water interface, in which three-dimensional effects (of the kind required to break down the bilayer permeability barrier) cannot occur. The study of native HlyA, together with the nonlytic precursor pro-HlyA, and of different mutants demonstrates that although some nonlytic variants (e.g. pro-HlyA) exhibit very low levels of insertion, others (e.g. the nonlytic mutant HlyA H859N) insert even more strongly than the lytic wild type. These results show that insertion does not necessarily lead to membrane lysis, i.e. that insertion and lysis are not "coupled" phenomena. Millimolar levels of Ca(2+), which are essential for the lytic activity, cause an extra degree of insertion but only in the case of the lytic forms of HlyA.  相似文献   

15.
A clinical strain SSU of Aeromonas hydrophila produces a potent cytotoxic enterotoxin (Act) with cytotoxic, enterotoxic, and hemolytic activities. A new gene, which encoded a hemolysin of 439-amino acid residues with a molecular mass of 49 kDa, was identified. This hemolysin (HlyA) was detected based on the observation that the act gene minus mutant of A. hydrophila SSU still had residual hemolytic activity. The new hemolysin gene (hlyA) was cloned, sequenced, and overexpressed in Escherichia coli. The hlyA gene exhibited 96% identity with its homolog found in a recently annotated genome sequence of an environmental isolate, namely the type strain ATCC 7966 of A. hydrophila subspecies hydrophila. The hlyA gene did not exhibit any homology with other known hemolysins and aerolysin genes detected in Aeromonas isolates. However, this hemolysin exhibited significant homology with hemolysin of Vibrio vulnificus as well as with the cystathionine beta synthase domain protein of Shewanella oneidensis. The HlyA protein was activated only after treatment with trypsin and the resulting hemolytic activity was not neutralizable with antibodies to Act. The presence of the hlyA gene in clinical and water Aeromonas isolates was investigated and DNA fingerprint analysis was performed to demonstrate its possible role in Aeromonas virulence.  相似文献   

16.
17.
Internal fatty acylation of proteins is a recognized means of modifying biological behavior. Escherichia coli hemolysin A (HlyA), a toxic protein, is transcribed as a nontoxic protein and made toxic by internal acylation of two lysine residue epsilon-amino groups; HlyC catalyzes the acyl transfer from acyl-acyl carrier protein (ACP), the obligate acyl donor. Conserved residues among the respective homologous C proteins that activate 13 different RTX (repeats in toxin) toxins of which HlyA is the prototype likely include some residues that are important in catalysis. Possible roles of two conserved tyrosines and two conserved arginines were investigated by noting the effects of chemical modifiers and site-directed mutagenesis. TNM modification of HlyC at pH 8.0 led to extensive inhibition that was prevented by the presence of the substrate myristoyl-ACP but not by the product, ACPSH. NAI had no effect. Y70G and Y150G greatly diminished enzyme activity, whereas mutations Y70F and Y150F exhibited wild-type activity. Modification of arginine residues with PG markedly lowered acyltransferase activity with moderate protection by both myristoyl-ACP and ACPSH. Under optimum conditions, four separate mutations of the two conserved arginine residues (R24A, R24K, R87A, and R87K) had little effect on acyltransferase activity.  相似文献   

18.
Coexpression of pairs of nonhaemolytic H1yA mutants in the recombination-deficient (recA) strain Escherichia coli HB101 resulted in a partial reconstitution of haemolytic activity, indicating that the mutation in one H1yA molecule can be complemented by the corresponding wild-type sequence in the other mutant HlyA molecule and vice versa. This suggests that two or more HlyA molecules aggregate prior to pore formation. Partial reconstitution of the haemolytic activity was obtained by the combined expression of a nonhaemolytic HlyA derivative containing a deletion of five repeat units in the repeat domain and several nonhaemolytic HlyA mutants affected in the pore-forming hydrophobic region. The simultaneous expression of two inactive mutant HlyA proteins affected in the region at which HlyA is covalently modified by HlyC and the repeat domain, respectively, resulted in a haemolytic phenotype on blood agar plates comparable to that of wild-type haemolysin. However, complementation was not possible between pairs of HlyA molecules containing site-directed mutations in the hydrophobic region and the modification region, respectively. In addition, no complementation was observed between HlyA mutants with specific mutations at different sites of the same functional domain, i.e. within the hydrophobic region, the modification region or the repeat domain. The aggregation of the HlyA molecules appears to take place after secretion, since no extracellular haemolytic activity was detected when a truncated but active HlyA lacking the C-terminal secretion sequence was expressed together with a non-haemolytic but transport-competent HlyA mutant containing a deletion in the repeat domain.  相似文献   

19.
We describe a new procedure allowing the generation and detection of immunogenic antigens from Helicobacter pylori via the hemolysin secretion apparatus of Escherichia coli. The gene (or gene fragment) encoding the H. pylori protein (or protein domain) is inserted in-frame into a residual portion of the hemolysin gene (hlyA), encoding the HlyA secretion signal (HlyA(s)). These fusion proteins are secreted efficiently by E. coli. This new approach allows the identification of immunodominant antigens by using sera derived from H. pylori-infected patients suffering from different gastroduodenal pathologies. Three immunodominant antigens bearing the ureB (urease B-subunit), flaA (flagellin A-subunit), and an unknown ORF (HP0888) encoding an E. coli FecE analogous protein fused to hlyA(s) were identified and characterized.  相似文献   

20.
A 110-kilodalton polypeptide isolated from cell-free culture supernatants of hemolytic Escherichia coli was shown to be associated with hemolytic activity. The relative amount of the extracellular 110-kilodalton species detected directly reflects the extracellular hemolysin activity associated with Escherichia coli strains harboring different hemolysin recombinant plasmids. The predicted molecular mass of the hemolysin structural gene (hlyA) based on DNA sequence analysis was 109,858 daltons. Amino-terminal amino acid sequence analysis of the 110-kilodalton polypeptide provided direct evidence that it was encoded by hlyA. Based on this information, it was also demonstrated that the HlyA polypeptide was released extracellularly without signal peptidase-like cleavage. An examination of hemolysin-specific polypeptides detected by use of recombinant plasmids in a minicell-producing strain of Escherichia coli was performed. These studies demonstrated how hemolysin-associated 110- and 58-kilodalton polypeptides detected in the minicell background could be misinterpreted as a precursor-product relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号