首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human breast epithelial HBL100 cells, which bind both epidermal growth factor (EGF) and glucocorticoids, were labelled to steady state specific activity with 32Pi and the glucocorticoid receptor was immunoprecipitated from cell lysates with polyclonal antiserum GR884. Immunoprecipitated receptor was resolved by NaDodSO4-polyacrylamide gel electrophoresis and identified by autoradiography. Immunoprecipitated receptor also was characterized by western blot analysis and affinity labelling with [3H]dexamethasone-21-mesylate. Phosphoamino acid analysis of 32P-glucocorticoid receptor revealed 89% phosphoserine and 11% phosphotyrosine. Treatment of steady state 32Pi-labelled cells with EGF stimulated total and alkali-stable phosphorylation in the 97 kDa receptor band by about 35%. Prior incubation with dexamethasone inhibited EGF stimulated, alkali-stable phosphorylation of the 97 kDa glucocorticoid receptor band.  相似文献   

2.
Caveolin-1 is the major coat protein of caveolae and has been reported to interact with various intracellular signaling molecules including the epidermal growth factor (EGF) receptor. To investigate the involvement of caveolin-1 in EGF receptor action, we used mouse B82L fibroblasts transfected with (a) wild type EGF receptor, (b) a C-terminally truncated EGF receptor at residue 1022, (c) a C-terminally truncated EGF receptor at residue 973, or (d) a kinase-inactive EGF receptor (K721M). Following EGF treatment, there was a distinct electrophoretic mobility shift of the caveolin-1 present in cells expressing the truncated forms of the EGF receptor, but this shift was not detectable in cells bearing either normal levels of the wild type EGF receptor or a kinase-inactive receptor. This mobility shift was also not observed following the addition of other cell stimuli, such as platelet-derived growth factor, insulin, basic fibroblast growth factor, or phorbol 12-myristate 13-acetate. Analysis of caveolin-1 immunoprecipitates from EGF-stimulated or nonstimulated cells demonstrated that the EGF-induced mobility shift of caveolin-1 was associated with its tyrosine phosphorylation in cells expressing truncated EGF receptors. Maximal caveolin-1 phosphorylation was achieved within 5 min after exposure to 10 nM EGF and remained elevated for at least 2 h. Additionally, several distinct phosphotyrosine-containing proteins (60, 45, 29, 24, and 20 kDa) were co-immunoprecipitated with caveolin-1 in an EGF-dependent manner. Furthermore, the Src family kinase inhibitor, PP1, does not affect autophosphorylation of the receptor, but it does inhibit the EGF-induced mobility shift and phosphorylation of caveolin-1. Conversely, the MEK inhibitors PD98059 and UO126 could attenuate EGF-induced mitogen-activated protein kinase activation, they do not affect the EGF-induced mobility shift of caveolin-1. Because truncation and overexpression of the EGF receptor have been linked to cell transformation, these results provide the first evidence that the tyrosine phosphorylation of caveolin-1 occurs via an EGF-sensitive signaling pathway that can be potentiated by an aberrant activity or expression of various forms of the EGF receptor.  相似文献   

3.
The Met receptor tyrosine kinase (RTK) regulates epithelial remodeling, dispersal, and invasion and is deregulated in many human cancers. It is now accepted that impaired down-regulation, as well as sustained activation, of RTKs could contribute to their deregulation. Down-regulation of the Met receptor involves ligand-induced internalization, ubiquitination by Cbl ubiquitin ligases, and lysosomal degradation. Here we report that a ubiquitination-deficient Met receptor mutant (Y1003F) is tumorigenic in vivo. The Met Y1003F mutant is internalized, and undergoes endosomal trafficking with kinetics similar to the wild-type Met receptor, yet is inefficiently targeted for degradation. This results in sustained activation of Met Y1003F and downstream signals involving the Ras-mitogen-activated protein kinase pathway, cell transformation, and tumorigenesis. Although Met Y1003F undergoes endosomal trafficking and localizes with the cargo-sorting protein Hrs, it is unable to induce phosphorylation of Hrs. Fusion of monoubiquitin to Met Y1003F is sufficient to decrease Met receptor stability and prevent sustained MEK1/2 activation. In addition, this rescues Hrs tyrosine phosphorylation and decreases transformation in a focus-forming assay. These results demonstrate that Cbl-dependent ubiquitination is dispensable for Met internalization but is critical to target the Met receptor to components of the lysosomal sorting machinery and to suppress its inherent transforming activity.  相似文献   

4.
The specific tyrosine phosphorylation of glucose-6-phosphate dehydrogenase (G6PDH) by the epidermal growth factor (EGF) receptor in vitro is demonstrated. The Km values of the substrate G6PDH and of ATP for the receptor tyrosine kinase were ca. 1 and 10 microM, respectively. The rate of phosphorylation was EGF dependent, with a four-fold increase in Vmax in the presence of EGF. The phosphorylation was stimulated maximally by 0.2 microM or greater EGF, with an ED50 of ca. 20 nM which is consistent with the affinity of the solubilized receptor for EGF. Using conditions of 5 microM G6PDH, 100 microM ATP, 5 mM Mg2+, and 1 mM Mn2+, up to 0.3 mol phosphate was incorporated into 1 mol of the 55-kDa subunit of Baker's yeast G6PDH. Tryptic peptide mapping revealed several unique phosphopeptides for both Baker's yeast and bovine adrenal G6PDH. The patterns of phosphopeptides for a given enzyme were identical for basal and EGF-stimulated phosphorylation.  相似文献   

5.
Gonadotropin releasing hormone (GnRH) contributes to the maintenance of gonadotrope function by increasing extracellular signal-regulated kinase (ERK) activity subsequent to binding to its cognate G-protein-coupled receptor. As the GnRH receptor exclusively interacts with G(q/11) proteins and as receptor expression is regulated in a beta-arrestin-independent fashion, it represents a good model to systematically dissect underlying signaling pathways. In alphaT3-1 gonadotropes endogenously expressing the GnRH receptor, GnRH challenge resulted in a rapid increase in ERK activity which was attenuated by the epidermal growth factor receptor (EGFR)-specific tyrosine kinase inhibitor AG1478. In COS-7 cells transiently expressing the human GnRH receptor, agonist-induced ERK activation was independent of free Gbetagamma subunits but could be mimicked by short-term phorbol ester treatment. Most notably, G(q/11)-induced ERK activation was sensitive to N17-Ras and to expression of the C-terminal Src kinase but also to other dominant negative mutants of signaling components localized upstream of Ras, like Shc and the EGFR. GnRH as well as phorbol esters led to Ras activation in COS-7 and alphaT3-1 cells, which was dependent on Src and EGFR tyrosine kinases, indicating that both tyrosine kinases act downstream of protein kinase C (PKC) and upstream of Ras. However, Src did not contribute to Shc tyrosine phosphorylation. GnRH or phorbol ester challenge resulted in PKC-dependent EGFR autophosphorylation. Furthermore, a 5-min phorbol ester treatment was sufficient to trigger tyrosine phosphorylation of the platelet-derived growth factor-beta receptor in L cells. Thus, in several cell systems PKC is able to stimulate Ras via activation of receptor tyrosine kinases.  相似文献   

6.
Epidermal growth factor (EGF)-stimulated tyrosine phosphorylation of proteins was examined in cells expressing wild-type (WT-EGFR) EGF receptors or EGF receptors truncated at residue 973 (973-EGFR). A much broader spectrum of tyrosine phosphorylated proteins was found following EGF treatment of 973-EGFR expressing cells compared with cells expressing wild-type receptors. Several additional ras GTPase activating protein-associated tyrosine phosphorylated proteins were found in EGF-treated 973-EGFR cells relative to WT-EGFR cells. Additional tyrosine-phosphorylated proteins were also found to co-immunoprecipitate with phospholipase C gamma 1 (PLC gamma 1) following EGF treatment of cells expressing 973-EGFR relative to cells expressing WT-EGFR. EGF-stimulated tyrosine phosphorylation of PLC gamma 1 was found in cells expressing WT-EGFR, but not in cells expressing 973-EGFR. WT-EGF receptor from EGF-treated cells bound well to bacterially expressed src homology (SH) regions of PLC gamma 1 and to a lesser extent to bacterially expressed GTPase activating protein SH regions. No binding of 973-EGF receptor to SH regions of either protein could be detected. EGF treatment greatly reduced the half-life of WT-EGFR, but had relatively little effect on the half-life of 973-EGFR. EGF induced internalization of 973-EGFR at a slower rate than WT-EGFR and caused the appearance of discrete receptor degradation products for both cell types. The data indicate that truncation of the EGF receptor at residue 973 alters receptor substrate specificity, decreases the rate of receptor internalization, and has an inhibitory effect on receptor degradation.  相似文献   

7.
Insulin-like growth factor I (IGF-I) receptors are partially purified from human placenta by sequential affinity chromatography with wheat germ agglutinin-agarose and agarose derivatized with an IGF-I analog. Adsorption specificity to this affinity matrix demonstrates that low coupling ratios of IGF-I analog to agarose yield preparations that are highly selective in purifying IGF-I receptor with minimal cross-contamination by the insulin receptor present in the same placental extracts. Incubation of the immobilized IGF-I receptor preparation with [gamma-32P]ATP results in a marked phosphorylation of the receptor beta subunits, which appear as a doublet of Mr = 93,000 and 95,000 upon electrophoresis on dodecyl sulfate-polyacrylamide gels. The 32P-labeled receptor beta subunit doublet contains predominantly phosphotyrosine and to a much lesser extent phosphoserine and phosphothreonine residues. The immobilized IGF-I receptor preparation exhibits tyrosine kinase activity toward exogenous histone. The characteristics of the IGF-I receptor-associated tyrosine kinase are remarkably similar to those of the insulin receptor kinase. Thus, prior phosphorylation of the immobilized IGF-I receptor preparation with increasing concentrations of unlabeled ATP followed by washing to remove the unreacted ATP results in a progressive activation of the receptor-associated histone kinase activity. A maximal (10-fold) activation is achieved between 0.25 and 1 mM ATP. The concentration of ATP required for half-maximal (30 microM) activation of the IGF-I receptor kinase is similar to that of the insulin receptor kinase. Like the insulin receptor kinase, the elevated kinase activity of the phosphorylated IGF-I receptor is reversed following dephosphorylation of the receptor beta subunit with alkaline phosphatase. Furthermore, the phosphorylation of the IGF-I receptor beta subunit doublet is enhanced by 7-8-fold when reductant is included in the reaction medium, as is observed for the insulin receptor kinase. Significantly, the dose responses of both receptor types to reductant are identical. Both of the 32P-labeled IGF-I receptor beta subunit bands are resolved into six matching phosphopeptide fractions when the corresponding tryptic hydrolysates are resolved by reverse phase high pressure liquid chromatography. Significantly, four out of the six phosphopeptide fractions derived from the trypsinized IGF-I receptor beta subunits are chromatographically identical to those from the tryptic hydrolysates of 32P-labeled insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a mammalian homologue of yeast vacuolar protein sorting (Vps) protein Vps27p; however, the role of Hrs in lysosomal trafficking is unclear. Here, we report that Hrs interacts with sorting nexin 1 (SNX1), a recently identified mammalian homologue of yeast Vps5p that recognizes the lysosomal targeting code of epidermal growth factor receptor (EGFR) and participates in lysosomal trafficking of the receptor. Biochemical analyses demonstrate that Hrs and SNX1 are ubiquitous proteins that exist in both cytosolic and membrane-associated pools, and that the association of Hrs and SNX occurs on cellular membranes but not in the cytosol. Furthermore, endogenous SNX1 and Hrs form a approximately 550-kDa complex that excludes EGFR. Immunofluorescence and subcellular fractionation studies show that Hrs and SNX1 colocalize on early endosomes. By using deletion analysis, we have mapped the binding domains of Hrs and SNX1 that mediate their association. Overexpression of Hrs or its SNX1-binding domain inhibits ligand-induced degradation of EGFR, but does not affect either constitutive or ligand-induced receptor-mediated endocytosis. These results suggest that Hrs may regulate lysosomal trafficking through its interaction with SNX1.  相似文献   

9.
The platelet-derived growth factor (PDGF) beta receptor mediates mitogenic and chemotactic signals. Like other tyrosine kinase receptors, the PDGF beta receptor is negatively regulated by protein tyrosine phosphatases (PTPs). To explore whether T-cell PTP (TC-PTP) negatively regulates the PDGF beta receptor, we compared PDGF beta receptor tyrosine phosphorylation in wild-type and TC-PTP knockout (ko) mouse embryos. PDGF beta receptors were hyperphosphorylated in TC-PTP ko embryos. Fivefold-higher ligand-induced receptor phosphorylation was observed in TC-PTP ko mouse embryo fibroblasts (MEFs) as well. Reexpression of TC-PTP partly abolished this difference. As determined with site-specific phosphotyrosine antibodies, the extent of hyperphosphorylation varied among different autophosphorylation sites. The phospholipase Cgamma1 binding site Y1021, previously implicated in chemotaxis, displayed the largest increase in phosphorylation. The increase in Y1021 phosphorylation was accompanied by increased phospholipase Cgamma1 activity and migratory hyperresponsiveness to PDGF. PDGF beta receptor tyrosine phosphorylation in PTP-1B ko MEFs but not in PTPepsilon ko MEFs was also higher than that in control cells. This increase occurred with a site distribution different from that seen after TC-PTP depletion. PDGF-induced migration was not increased in PTP-1B ko cells. In summary, our findings identify TC-PTP as a previously unrecognized negative regulator of PDGF beta receptor signaling and support the general notion that PTPs display site selectivity in their action on tyrosine kinase receptors.  相似文献   

10.
We have investigated the epidermal growth factor (EGF)-stimulated tyrosine-specific protein kinase activity in quiescent cultures of diploid human fibroblasts that have a well characterized mitogenic response to EGF. We developed a method of permeabilizing cells with digitonin or other agents that permitted the rapid labeling of cellular proteins with exogenously added [gamma-32P]ATP while allowing only about 25% of marker cytosolic enzymes to escape from the cells. When phosphatases were inhibited with zinc and vanadate, EGF induced up to 8-fold stimulation of the incorporation of radioactivity from [gamma-32P]ATP into a 35-kDa band on sodium dodecyl sulfate gels. Alkali treatment of gels showed that EGF stimulated the phosphorylation of bands with apparent molecular masses of 170, 45, 35, 26, 22, and 21 kDa. Phosphoamino acid analysis was performed on the 170- and 35-kDa bands and revealed that the EGF-stimulated phosphorylation was on tyrosyl residues. The 35-kDa band was resolved into four spots by two-dimensional gel electrophoresis. The most acidic form was the most prominent and it was precipitated by an antiserum against a 35-kDa protein from A-431 cells; heretofore, this protein has only been reported to be phosphorylated in an EGF-dependent manner by A-431 membranes in vitro (Fava, R. A., and Cohen, S. (1984) J. Biol. Chem. 259, 2636-2645). This antiserum also precipitated a 35-kDa phospho-protein from extracts of intact [32P]orthophosphate-labeled fibroblasts which was phosphorylated on tyrosine in an EGF-dependent manner. None of the forms of the 35-kDa phosphoproteins labeled in permeabilized cells were immunologically related to the 34-kDa protein that is a substrate for the tyrosyl kinase encoded by Rous sarcoma virus. Other mitogens (serum, insulin, platelet-derived growth factor, and thrombin) did not detectably stimulate phosphorylation in permeabilized cells.  相似文献   

11.
Various members of the canonical family of transient receptor potential channels (TRPCs) exhibit increased cation influx following receptor stimulation or Ca(2+) store depletion. Tyrosine phosphorylation of TRP family members also results in increased channel activity; however, the link between the two events is unclear. We report that two tyrosine residues in the C terminus of human TRPC4 (hTRPC4), Tyr-959 and Tyr-972, are phosphorylated following epidermal growth factor (EGF) receptor stimulation of COS-7 cells. This phosphorylation was mediated by Src family tyrosine kinases (STKs), with Fyn appearing to be the dominant kinase. In addition, EGF receptor stimulation induced the exocytotic insertion of hTRPC4 into the plasma membrane dependent on the activity of STKs and was accompanied by a phosphorylation-dependent increase in the association of hTRPC4 with Na(+)/H(+) exchanger regulatory factor. Furthermore, this translocation and association was defective upon mutation of Tyr-959 and Tyr-972 to phenylalanine. Significantly, inhibition of STKs was concomitant with a reduction in Ca(2+) influx in both native COS-7 cells and hTRPC4-expressing HEK293 cells, with cells expressing the Y959F/Y972F mutant exhibiting a reduced EGF response. These findings represent the first demonstration of a mechanism for phosphorylation to modulate TRPC channel function.  相似文献   

12.
Galpha(i)-coupled receptor stimulation results in epidermal growth factor receptor (EGFR) phosphorylation and MAPK activation. Regulators of G protein signaling (RGS proteins) inhibit G protein-dependent signal transduction by accelerating Galpha(i) GTP hydrolysis, shortening the duration of G protein effector stimulation. RGS16 contains two conserved tyrosine residues in the RGS box, Tyr(168) and Tyr(177), which are predicted sites of phosphorylation. RGS16 underwent phosphorylation in response to m2 muscarinic receptor or EGFR stimulation in HEK 293T or COS-7 cells, which required EGFR kinase activity. Mutational analysis suggested that RGS16 was phosphorylated on both tyrosine residues (Tyr(168) Tyr(177)) after EGF stimulation. RGS16 co-immunoprecipitated with EGFR, and the interaction did not require EGFR activation. Purified EGFR phosphorylated only recombinant RGS16 wild-type or Y177F in vitro, implying that EGFR-mediated phosphorylation depended on residue Tyr(168). Phosphorylated RGS16 demonstrated enhanced GTPase accelerating (GAP) activity on Galpha(i). Mutation of Tyr(168) to phenylalanine resulted in a 30% diminution in RGS16 GAP activity but completely eliminated its ability to regulate G(i)-mediated MAPK activation or adenylyl cyclase inhibition in HEK 293T cells. In contrast, mutation of Tyr(177) to phenylalanine had no effect on RGS16 GAP activity but also abolished its regulation of G(i)-mediated signal transduction in these cells. These data suggest that tyrosine phosphorylation regulates RGS16 function and that EGFR may potentially inhibit Galpha(i)-dependent MAPK activation in a feedback loop by enhancing RGS16 activity through tyrosine phosphorylation.  相似文献   

13.
A partnership between the ectodomain of the fibroblast growth factor receptor (FGFR) isotypes and the chains of pericellular matrix heparan sulfate determines the fibroblast growth factor (FGF) and cell-type specificitives of the FGFR signaling complex. The contribution of the FGFR intracellular tyrosine kinase domains to the specificity of FGFR signaling is unclear. This report shows that the quantity and quality of phosphorylation of the FGFR kinase substrate SNT1 (also called FGFR substrate 2, FRS2) is both FGFR isotype and cell-type specific in prostate tumor epithelial cells at different stages of malignancy. Epithelial cell-resident FGFR2 that promotes homeostasis yields a low level of phosphorylated 65-kDa SNT1. Phosphorylation by ectopic FGFR1 that promotes malignancy was much more intense and yielded a phosphorylated 85-kDa SNT1. The amount of the 85-kDa SNT1 increased by 20-fold during proliferative aging of FGFR1-expressing cell populations that is required for FGFR1-stimulated mitogenesis and the malignant phenotype. In addition, the receptor-specific differential phosphorylation of SNT1 by FGFR isotypes, both of which are normally anchored to the cell membrane, occurred only in intact cells. Therefore, similar to kinase subunits within the heparan sulfate-FGFR complex, cell membrane and cytoskeletal context likely determine FGFR isotype- and cell-type-specific conformational relationships between FGFR kinases and external substrates. This determines the quantity and quality of SNT1 phosphorylation and differential signaling.  相似文献   

14.
15.
Epidermal growth factor receptor signaling   总被引:5,自引:0,他引:5  
  相似文献   

16.
Rat liver epithelial cells were exposed to three quinones with different properties: menadione (2-methyl-1,4-naphthoquinone, vitamin K3), an alkylating as well as redox-cycling quinone, the strongly alkylating p-benzoquinone (BQ), and the non-arylating redox-cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). All three quinones induced the activation of extracellular signal-regulated kinase (ERK) 1 and ERK 2 via the activation of epidermal growth factor receptor (EGFR) and MAPK/ERK kinases (MEK) 1/2. ERK activation resulted in phosphorylation at Ser-279 and Ser-282 of the gap junctional protein, connexin-43, known to result in the loss of gap junctional intercellular communication. Another EGFR-dependent pathway was stimulated, leading to the activation of the antiapoptotic kinase Akt via phosphoinositide 3-kinase. The activation of EGFR-dependent signaling by these quinones was by different mechanisms: (i) menadione, but not BQ or DMNQ, inhibited a protein-tyrosine phosphatase regulating the EGFR, as concluded from an EGFR dephosphorylation assay; (ii) although menadione-induced activation of ERK was unimpaired by pretreatment of cells with N-acetyl cysteine, activation by BQ and DMNQ was prevented; (iii) cellular glutathione (GSH) levels were strongly depleted by BQ. The mere depletion of GSH by application of diethyl maleate EGFR-dependently activated ERK and Akt, thus mimicking BQ effects. GSH levels were only moderately decreased by menadione and not affected by DMNQ. In summary, EGFR-dependent signaling was mediated by protein-tyrosine phosphatase inactivation (menadione), GSH depletion (BQ), and redox-cycling (DMNQ), funneling into the same signaling pathway.  相似文献   

17.
Purified preparations of insulin, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF) receptors were compared for their abilities to phosphorylate purified hen oviduct progesterone receptors. The specific activities of all three peptide hormone-induced receptor kinases were first defined using a synthetic tridecapeptide tyrosine protein kinase substrate. Next, equivalent ligand-activated activities of the three receptor kinases were tested for their abilities to phosphorylate hen oviduct progesterone receptor. Both the insulin and EGF receptors phosphorylated progesterone receptor at high affinity, exclusively at tyrosine residues and with maximal stoichiometries that were near unity. In contrast, the PDGF receptor did not recognize progesterone receptor as a substrate. Insulin decreased the Km of the insulin receptor for progesterone receptor subunits as substrates, but had no significant effect on Vmax values. On the other hand, EGF increased the Vmax of the EGF receptor for progesterone receptor subunits as substrates. Phosphorylation of progesterone receptor by the insulin and EGF receptor kinases differed in two additional ways. 1) EGF-activated receptor phosphorylated the 80- and 105-kDa progesterone receptor subunits to an equal extent, whereas insulin-activated receptor preferentially phosphorylated the 80-kDa subunit. 2) Phosphopeptide fingerprinting analyses revealed that while insulin and EGF receptors phosphorylated one identical major site on both progesterone receptor subunits, they differed in their specificities for other sites.  相似文献   

18.
Ligand binding to cell surface receptors initiates a cascade of signaling events regulated by dynamic phosphorylation events on a multitude of pathway proteins. Quantitative features, including intensity, timing, and duration of phosphorylation of particular residues, may play a role in determining cellular response, but experimental data required for analysis of these features have not previously been available. To understand the dynamic operation of signaling cascades, we have developed a method enabling the simultaneous quantification of tyrosine phosphorylation of specific residues on dozens of key proteins in a time-resolved manner, downstream of epidermal growth factor receptor (EGFR) activation. Tryptic peptides from four different EGFR stimulation time points were labeled with four isoforms of the iTRAQ reagent to enable downstream quantification. After mixing of the labeled samples, tyrosine-phosphorylated peptides were immunoprecipitated with an anti-phosphotyrosine antibody and further enriched by IMAC before LC/MS/MS analysis. Database searching and manual confirmation of peptide phosphorylation site assignments led to the identification of 78 tyrosine phosphorylation sites on 58 proteins from a single analysis. Replicate analyses of a separate biological sample provided both validation of this first data set and identification of 26 additional tyrosine phosphorylation sites and 18 additional proteins. iTRAQ fragment ion ratios provided time course phosphorylation profiles for each site. The data set of quantitative temporal phosphorylation profiles was further characterized by self-organizing maps, which resulted in identification of several cohorts of tyrosine residues exhibiting self-similar temporal phosphorylation profiles, operationally defining dynamic modules in the EGFR signaling network consistent with particular cellular processes. The presence of novel proteins and associated tyrosine phosphorylation sites within these modules indicates additional components of this network and potentially localizes the topological action of these proteins. Additional analysis and modeling of the data generated in this study are likely to yield more sophisticated models of receptor tyrosine kinase-initiated signal transduction, trafficking, and regulation.  相似文献   

19.
Previous studies have shown that epidermal growth factor (EGF) synergizes with various extracellular matrix components in promoting the migration of B82L fibroblasts expressing wild-type EGF receptors and that functional EGF receptors are critical for the conversion of B82L fibroblasts to a migratory cell type (). In the present study, we examined the effects of platelet-derived growth factor (PDGF) on the motility of B82L fibroblasts using a microchemotaxis chamber. We found that PDGF can enhance fibronectin-induced migration of B82L fibroblasts expressing wild-type EGF receptors (B82L-clone B3). However, B82L cells that lack the EGF receptor (B82L-parental) or that express an EGF receptor that is kinase-inactive (B82L-K721M) or C-terminally truncated (B82L-c'973) exhibit little PDGF-stimulated migration. In addition, none of these three cell lines exhibit the capacity to migrate to fibronectin alone. These observations indicate that, similar to cell migration toward fibronectin, PDGF-induced cell migration of B82L fibroblasts is augmented by the expression of an intact EGF receptor kinase. The loss of PDGF-stimulated motility in B82L cells that do not express an intact EGF receptor does not appear to result from a gross dysfunction of PDGF receptors, because ligand-stimulated tyrosine phosphorylation of the PDGF-beta receptor and the activation of mitogen-activated protein kinases are readily detectable in these cells. Moreover, an interaction between EGF and PDGF receptor systems is supported by the observation that the EGF receptor exhibits an increase in phosphotyrosine content in a time-dependent fashion upon the addition of PDGF. Altogether, these studies demonstrate that the expression of EGF receptor is critical for PDGF-stimulated migration of murine B82L fibroblasts and suggest a role for the EGF receptor downstream of PDGF receptor activation in the signaling events that lead to PDGF-stimulated cell motility.  相似文献   

20.
Positive regulation of epidermal growth factor receptor signalling is related to many human malignancies. Besides overexpression and gain of function mutations, the escape from negative regulation through an increase in epidermal growth factor receptor stability has evolved as yet another key factor contributing to enhanced receptor activity. Intensive research over the past years has provided considerable evidence concerning the molecular mechanisms which provide epidermal growth factor receptor degradation. c-Cbl mediated ubiquitination, endocytosis via clathrin-coated pits, endosomal sorting and lysosomal degradation have become well-investigated cornerstones. Recent findings on the interdependency of the endosomal sorting complexes required for transport in multivesicular body sorting, stress the topicality of receptor tyrosine kinase downregulation. Here, we review the degradation pathway of the epidermal growth factor receptor, following the receptor from ligand binding to the lysosome and illustrating different modes of oncogenic deregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号