首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human T cells responding against transplanted allogeneic lung tissue have been implicated in late graft failure secondary to obliterative bronchiolitis. This obliterative airways disease (OAD) also develops in heterotopic murine tracheal allografts in association with graft infiltration by both CD8(+) and CD4(+) T cells. To date, there has been little evidence to suggest that directly alloreactive CD8(+) T cells either promote chronic rejection or lead to the development of OAD following airway allotransplantation. Using L(d)-specific TCR-Tg 2C CD8(+) T cells adoptively transferred into wild-type B6 (H-2(b)) mice and the transplantation of BALB/c (H-2(d)) tracheal allografts, we now show that the direct recognition of donor-specific class I MHC molecules by host CD8(+) T cells leads to their activation, clonal expansion within the graft, and differentiation to an effector phenotype with the capacity to induce airway fibrosis. In addition, these experiments demonstrate that ongoing direct alloantigen recognition within the transplanted airway tissue is necessary for the recruitment and retention of these directly alloreactive CD8(+) T cells. Thus, these experiments are the first to definitively show a role for directly alloreactive CD8(+) T cells in the chronic rejection that leads to OAD.  相似文献   

2.
Ag recognition by OVA-reactive OT-II (I-Ab restricted) and DO11.10 (I-Ad restricted) TCR-Tg CD4+ T cells after heterotopic transplantation of OVA transgene-expressing tracheal grafts was examined as a model of minor histocompatibility Ag (mHAg)-induced chronic allograft rejection. In response to airway allotransplantation with grafts expressing the OVA transgene, these TCR-Tg CD4+ T cells expressed the activation markers CD69 and CD44, demonstrated evidence of blastogenesis, underwent multiple rounds of cell division leading to their clonal expansion in the draining lymph node, and proceeded to differentiate to a effector/memory T cell phenotype based on a reduction in the expression of CD45RB. These mHAg-specific TCR-Tg CD4+ T cells responded equally well to fully MHC-mismatched tracheas and to class II-deficient allografts, demonstrating that donor mHAg recognition by recipient CD4+ T cells does not rely on Ag presentation by donor-derived APC. The activation of mHAg-specific TCR-Tg CD4+ T cells after their adoptive transfer into recipient mice given MHC-matched, but mHAg-disparate, airway allografts was associated with their movement into the allograft and the near uniform destruction of the transplanted airway tissue secondary to the development of obliterative airways disease. These results demonstrate that an activation of mHAg-reactive CD4+ T cells in the draining lymph node by recipient APC that indirectly express graft mHAg-derived peptide/class II MHC complexes precedes responder T cell proliferation and differentiation, and leads to the eventual migration of these alloreactive T cells to the transplanted airway tissue and the promotion of chronic graft rejection.  相似文献   

3.
In transplantation, activation of complement has largely been equated to antibody-mediated rejection, but complement is also important in recognition of apoptotic and necrotic cells as well as in modifying antigen presentation to T cells and B cells. As a part of the innate immune system, complement is one of the first responses to injury, and it can determine the direction and magnitude of the subsequent responses. Consequently, the effects of complement in allorecognition and graft rejection are increased when organs are procured from cadaver donors because these organs sustain a series of stresses from brain death, prolonged life support, ischemia and finally reperfusion that initiate proinflammatory processes and tissue injury. In addition, these organs are transplanted to patients, who frequently have been sensitized to histocompatibility antigens as the result of transfusions, pregnancies or transplants.Complement activation generates a series of biologically active effector molecules that can modulate graft rejection by directly binding to the graft or by modifying the response of macrophages, T and B cells of the recipient. However, complement is regulated and the process of regulation produces split products that can decrease as well as increase immune responses. Small animal models have been developed to test these variables. The guide for evaluating results from these models remains clinical findings because there are significant differences between the rodent and human complement systems.  相似文献   

4.
There is now considerable evidence suggesting that CD8(+) T cells are able to generate effector but not functional memory T cells following pathogenic infections in the absence of CD4(+) T cells. We show that following transplantation of allogeneic skin, in the absence of CD4(+) T cells, CD8(+) T cells become activated, proliferate, and expand exclusively in the draining lymph nodes and are able to infiltrate and reject skin allografts. CD44(+)CD8(+) T cells isolated 100 days after transplantation rapidly produce IFN-gamma following restimulation with alloantigen in vitro. In vivo CD44(+)CD8(+) T cells rejected donor-type skin allografts more rapidly than naive CD8(+) T cells demonstrating the ability of these putative memory T cells to mount an effective recall response in vivo. These data form the first direct demonstration that CD8(+) T cells are able to generate memory as well as effector cells in response to alloantigen during rejection in the complete absence of CD4(+) T cells. These data have important implications for the design of therapies to combat rejection and serve to reinforce the view that CD8(+) T cell responses to allografts require manipulation in addition to CD4(+) T cell responses to completely prevent the rejection of foreign organ transplants.  相似文献   

5.
CD8+ T cells have long been considered to be the prototypical cytotoxic lymphocyte subpopulation. However, whether alloreactive CD8+ T cells require traditional cytolytic pathways such as perforin and Fas ligand (FasL) to mediate graft rejection has been a controversial issue. In the present studies, we examined the role of varied effector pathways in CD8+ T cell-mediated rejection of pancreatic islet allografts. Our goal was to systematically determine the relative requirements, if any, of perforin and FasL as well as the proinflammatory cytokine IFN-gamma in triggering graft destruction. To study CD8+ T cell effector pathways independently of other lymphocyte populations, purified alloreactive CD8+ T cells were adoptively transferred into severe combined immune-deficient (SCID) recipients bearing established islet allografts. Results indicate that to reject established islet allografts, primed CD8+ T cells do not require the individual action of the conventional cytotoxic effectors perforin and Fas ligand. In contrast, the ability to produce IFN-gamma is critical for efficient CD8+ T cell-mediated rejection of established islet allografts. Furthermore, alloreactive CD8+ TCR transgenic T cells (2C) also show IFN-gamma dependence for mediating islet allograft rejection in vivo. We speculate from these results that the production of IFN-gamma by alloreactive CD8+ T cells is a rate-limiting step in the process of islet allograft rejection.  相似文献   

6.
Immune destruction of the graft renal tubules is an important barrier to the long-term function of clinical renal allografts, but the underlying mechanisms remain obscure. CD103-an integrin conferring specificity for the epithelial cell-restricted ligand, E-cadherin-defines a subset of CD8 effectors that infiltrate the graft tubular epithelium during clinical rejection episodes, predicting a causal role for CD103+CD8+ effectors in tubular injury. In the present study, we used rodent transplant models to directly test this hypothesis. Surprisingly, CD8 cells infiltrating renal allografts undergoing unmodified acute rejection did not express significant levels of CD103. However, we demonstrate that a brief course of cyclosporine A to rat renal allograft recipients promotes progressive accumulation of CD103+CD8+ cells within the graft, concomitant with the development of tubular atrophy and interstitial fibrosis. As in the known clinical scenario, graft-associated CD103+CD8+ cells exhibited a T effector phenotype and were intimately associated with the renal tubular epithelium. Treatment with anti-CD103 mAb dramatically attenuated CD8 infiltration into the renal tubules and tubular injury. Mouse studies documented that CD103 expression is required for efficient destruction of the graft renal tubules by CD8 effectors directed to donor MHC I alloantigens. Taken together, these data document a causal role for CD103+CD8+ effectors in promoting tubular injury following allogeneic renal transplantation and identify novel targets for therapeutic intervention in this important clinical problem.  相似文献   

7.
Urodele amphibians are unique due to their greatly reduced immune responsiveness compared to bony fishes, which show acute immune responsiveness. In newts, the mean survival time of allogenic skin grafts in the transplantation immunity was 48.8 ± 8.3 days at 25°C, suggesting that it occurs in a chronic manner. The graft rejection process was categorized into three stages: a latent stage with frequent blood circulation, or the immune induction phase; a vascular stoppage stage with dominant infiltrating cells of T cells; and a rejection stage showing the change of the dominant cells to monocytes/macrophages, probably as effector cells, tetntatively referred to as the immune effector phase. The immune induction phase is susceptible to the cyclophosphamide (CY) mitosis inhibitor, but not to a temperature shift from 18 to 27°C, while the immune effector phase is susceptible to temperature shifts, but not CY-treatment, although the temperature shift failed to shorten the graft survival time to less than 25 days, which nearly equals that of the secondary set of grafts where the lack of complete blood circulation is remarkable and graft rejection is resistant to CY-treatment. In contrast, a very low temperature (5-10°C) completely prevented effector generation in newts; in frogs, however, it is reported that such low temperatures did not prevent the generation of effectors. Taken together, these data suggest that chronic responses in newts are due to effector cells other than cytotoxic T cells; possible effector cells are discussed.  相似文献   

8.
Skin allograft maintenance in a new synchimeric model system of tolerance.   总被引:9,自引:0,他引:9  
Treatment of mice with a single donor-specific transfusion plus a brief course of anti-CD154 mAb uniformly induces donor-specific transplantation tolerance characterized by the deletion of alloreactive CD8+ T cells. Survival of islet allografts in treated mice is permanent, but skin grafts eventually fail unless recipients are thymectomized. To analyze the mechanisms underlying tolerance induction, maintenance, and failure in euthymic mice we created a new analytical system based on allo-TCR-transgenic hemopoietic chimeric graft recipients. Chimeras were CBA (H-2(k)) mice engrafted with small numbers of syngeneic TCR-transgenic KB5 bone marrow cells. These mice subsequently circulated a self-renewing trace population of anti-H-2(b)-alloreactive CD8+ T cells maturing in a normal microenvironment. With this system, we studied the maintenance of H-2(b) allografts in tolerized mice. We documented that alloreactive CD8+ T cells deleted during tolerance induction slowly returned toward pretreatment levels. Skin allograft rejection in this system occurred in the context of 1) increasing numbers of alloreactive CD8+ cells; 2) a decline in anti-CD154 mAb concentration to levels too low to inhibit costimulatory functions; and 3) activation of the alloreactive CD8+ T cells during graft rejection following deliberate depletion of regulatory CD4+ T cells. Rejection of healed-in allografts in tolerized mice appears to be a dynamic process dependent on the level of residual costimulation blockade, CD4+ regulatory cells, and activated alloreactive CD8+ thymic emigrants that have repopulated the periphery after tolerization.  相似文献   

9.
Corneal transplantation is the most common solid organ transplantation. The immunologically privileged nature of the cornea results in high success rates. However, T cell-mediated rejection is the most common cause of corneal graft failure. Using antiangiogenesis treatment to prevent corneal neovascularization, which revokes immune privilege, prevents corneal allograft rejection. Endostatin is an antiangiogenic factor that maintains corneal avascularity. In this study, we directly test the role of antiangiogenic and immunological signals in corneal allograft survival, specifically the potential correlation of endostatin production and T cell recruitment. We report that 75% of the corneal allografts of BALB/c mice rejected after postoperative day (POD) 20, whereas all syngeneic grafts survived through POD60. This correlates with endogenous endostatin, which increased and remained high in syngeneic grafts but decreased after POD10 in allografts. Immunostaining demonstrated that early recruitment of allospecific T cells into allografts around POD10 correlated with decreased endostatin production. In Rag(-/-) mice, both allogeneic and syngeneic corneal grafts survived; endostatin remained high throughout. However, after T cell transfer, the allografts eventually rejected, and endostatin decreased. Furthermore, exogenous endostatin treatment delayed allograft rejection and promoted survival secondary to angiogenesis inhibition. Our results suggest that endostatin plays an important role in corneal allograft survival by inhibiting neovascularization and that early recruitment of allospecific T cells into the grafts promotes destruction of endostatin-producing cells, resulting in corneal neovascularization, massive infiltration of effector T cells, and ultimately graft rejection. Therefore, combined antiangiogenesis and immune suppression will be more effective in maintaining corneal allograft survival.  相似文献   

10.
Secondary lymphoid organs (the spleen, lymph nodes and mucosal lymphoid tissues) provide the proper environment for antigen-presenting cells to interact with and activate naive T and B lymphocytes. Although it is generally accepted that secondary lymphoid organs are essential for initiating immune responses to microbial antigens and to skin allografts, the prevailing view has been that the immune response to primarily vascularized organ transplants such as hearts and kidneys does not require the presence of secondary lymphoid tissue. The assumption has been that the immune response to such organs is initiated in the graft itself when recipient lymphocytes encounter foreign histocompatibility antigens presented by the graft's endothelial cells. In contrast to this view, we show here that cardiac allografts are accepted indefinitely in recipient mice that lack secondary lymphoid tissue, indicating that the alloimmune response to a vascularized organ transplant cannot be initiated in the graft itself. Moreover, we demonstrate that the permanent acceptance of these grafts is not due to tolerance but is because of immunologic 'ignorance'.  相似文献   

11.
CD28-independent costimulation of T cells in alloimmune responses.   总被引:15,自引:0,他引:15  
T cell costimulation by B7 molecules plays an important role in the regulation of alloimmune responses. Although both B7-1 and B7-2 bind CD28 and CTLA-4 on T cells, the role of B7-1 and B7-2 signaling through CTLA-4 in regulating alloimmune responses is incompletely understood. To address this question, we transplanted CD28-deficient mice with fully allogeneic vascularized cardiac allografts and studied the effect of selective blockade of B7-1 or B7-2. These mice reject their grafts by a mechanism that involves both CD4(+) and CD8(+) T cells. Blockade of CTLA-4 or B7-1 significantly accelerated graft rejection. In contrast, B7-2 blockade significantly prolonged allograft survival and, unexpectedly, reversed the acceleration of graft rejection caused by CTLA-4 blockade. Furthermore, B7-2 blockade prolonged graft survival in recipients that were both CD28 and CTLA-4 deficient. Our data indicate that B7-1 is the dominant ligand for CTLA-4-mediated down-regulation of alloimmune responses in vivo and suggest that B7-2 has an additional receptor other than CD28 and CTLA-4 to provide a positive costimulatory signal for T cells.  相似文献   

12.
We have provided evidence that both major T cell subsets, T4-positive (helper/inducer) and T8-positive (cytotoxic/suppressor), infiltrate human skin allografts. Overall, and in the graft dermis and graft bed, T4-positive cells were predominant (1.5 to 3 times more numerous than T8-positive cells). In contrast, T8-positive cells were relatively more numerous in the epidermis and hair follicles. Rejection probably proceeded by two apparently independent pathways: 1) direct contact killing of graft epithelial cells, presumably by immunologically specific T8-positive cytotoxic cells, and 2) injury of microvascular endothelium of both the graft and graft bed with secondary graft infarction. Although important in first set skin allograft rejection, the mechanism of the second type of killing is uncertain. T4-positive cells were probably involved, as evidenced by their greater numbers; furthermore, studies in mice have shown that transfused helper/inducer cells are able to effect first-set skin graft rejection. It remains to be determined whether T4-positive cells act alone or cooperate with other cells to destroy vessels and bring about graft rejection. Langerhans cells were recognized in epithelial and dermal compartments of both allografts and autografts by their reactivity with anti-T6 and anti-Ia antibodies. We could not determine whether such cells in allografts were of host or donor origin.  相似文献   

13.
Adaptive CD25(+)CD4(+) regulatory T cells (Treg) can be induced following exposure to alloantigen and may function alongside naturally occurring Treg to suppress allograft rejection when present in sufficient numbers. However, the location of the Treg as they function in vivo and the mechanisms used to control donor-reactive T cells remains ill-defined. In this study, we used a CD8(+) TCR transgenic model of skin allograft rejection to characterize in vivo activity of donor-reactive Treg cells during induction of transplantation tolerance. We demonstrate that, initially after skin transplantation, Treg attenuate the priming of donor-reactive naive CD8(+) T cells in the lymphoid tissue draining the graft site. However, with time, peripheral suppression is overcome despite the continued presence of Treg, resulting in the priming of donor-reactive CD8(+) T cells and graft infiltration by the resultant effector T cells and induction of a "Tc1-like" intragraft gene expression profile. These intragraft effector CD8(+) T cells are then prevented from eliciting rejection by Treg that simultaneously infiltrate the skin allografts, resulting in a failure to generate donor-reactive memory CD8(+) T cells. Overall, these data demonstrate for the first time that donor-reactive Treg can suppress allograft rejection using distinct mechanisms at different sites in vivo with the overall outcome of preventing the generation of donor-reactive memory T cells.  相似文献   

14.
15.
16.
17.
The features that determine whether graft-reactive T lymphocytes develop into effector cells capable of mediating organ destruction are not well understood. To investigate potential factors involved in this process, we first confirmed that female recipient mice acutely rejected minor Ag-disparate male skin, but not heart transplants. Despite this difference in outcome, heart and skin transplantation induced antidonor T cell responses of similar magnitude, specificity, and cytokine profile. The heart-graft-primed T cells transiently infiltrated the graft and ultimately induced the development of chronic transplant vasculopathy. Increasing the frequency of donor-reactive T cells by presensitization or by using TCR (CD8+ antimale)-transgenic recipients did not mediate acute rejection but accelerated the pace and severity of the vasculopathy. Surprisingly, decreasing the tissue mass of the donor heart by 50% resulted in acute rejection of these smaller grafts without increasing the frequency of antidonor effector T cells in the recipients. In complementary studies, placement of one or two male skin grafts on a single recipient did not affect the frequency or cytokine profile of the induced antimale T cell repertoire. Nonetheless, the recipients of single grafts acutely rejected the transplanted skin while the recipients of two skin grafts did not. These results provide new insight into the pathogenesis of transplant vasculopathy and provide an explanation for the difference in outcome between murine skin and heart transplants by highlighting the novel concept that the efficiency of transplant-reactive T cell immunity is heavily influenced by the tissue burden it encounters at the effector stage.  相似文献   

18.
Nerve allotransplantation provides a limitless source of nerve graft material for the reconstruction of large neural defects. It does require systemic immunosuppression or induction of immune unresponsiveness to prevent allograft rejection. It is unknown whether a greater volume of nerve graft material will increase the risk of rejection or the need for more intensive immunosuppression. This study assessed the relationship between the quantity of nerve tissue transplanted and the magnitude of the resulting immune response. Forty female (BALB/c) mice were randomly assigned to two groups that received either nerve isografts (BALB/c) or nerve allografts (C57BL/6). Each group was then subdivided into two groups that received either one or 10 sciatic nerve graft inlays. Histological and immunological assessments were performed at 10 days after engraftment. Histologic analysis demonstrated greater cellular infiltration in the allograft than the isograft groups but no appreciable difference in infiltration related to quantity of transplanted nerve tissue. In vitro assessments of the immune response using mixed lymphocyte assays and limiting dilution analysis similarly demonstrated a robust immune response to allografts but no effect on quantity of transplanted nerve tissue. These data suggest that larger peripheral nerve allografts may not be subject to increased risk for rejection.  相似文献   

19.
The role of CD4+ T cells in promoting CD8+ T cell effector activity in response to transplant Ags in vivo has not been reported. We used a hepatocellular allograft model known to initiate both CD4-dependent and CD4-independent rejection responses to investigate the contribution of CD4+ T cells to the development, function, and persistence of allospecific CD8+ T cell effectors in vivo. Complete MHC-mismatched hepatocellular allografts were transplanted into C57BL/6 (CD4-sufficient) or CD4 knockout (CD4-deficient) hosts. The development of in vivo allospecific cytotoxicity was determined by clearance of CFSE-labeled target cells. CD8+ T cell cytotoxic effector activity was enhanced in response to allogeneic hepatocellular grafts with a greater magnitude of allocytotoxicity and a prolonged persistence of CTL effector activity in CD4-sufficient hosts compared with CD4-deficient hosts. Cytolytic activity was mediated by CD8+ T cells in both recipient groups. In response to a second hepatocyte transplant, rejection kinetics were enhanced in both CD4-sufficient and CD4-deficient hepatocyte recipients. However, only CD4-sufficient hosts developed recall CTL responses with an augmented magnitude and persistence of allocytotoxicity in comparison with primary CTL responses. These studies show important functional differences between alloreactive CD8+ T cell cytolytic effectors that mature in vivo in the presence or absence of CD4+ T cells.  相似文献   

20.
The PD-1:PDL pathway plays an important role in regulating alloimmune responses but its role in transplantation tolerance is unknown. We investigated the role of PD-1:PDL costimulatory pathway in peripheral and a well established model of central transplantation tolerance. Early as well as delayed blockade of PDL1 but not PDL2 abrogated tolerance induced by CTLA4Ig in a fully MHC-mismatched cardiac allograft model. Accelerated rejection was associated with a significant increase in the frequency of IFN-gamma-producing alloreactive T cells and expansion of effector CD8(+) T cells in the periphery, and a decline in the percentage of Foxp3(+) graft infiltrating cells. Similarly, studies using PDL1/L2-deficient recipients confirmed the results with Ab blockade. Interestingly, while PDL1-deficient donor allografts were accepted by wild-type recipients treated with CTLA4Ig, the grafts developed severe chronic rejection and vasculopathy when compared with wild-type grafts. Finally, in a model of central tolerance induced by mixed allogeneic chimerism, engraftment was not abrogated by PDL1/L2 blockade. These novel data demonstrate the critical role of PDL1 for induction and maintenance of peripheral transplantation tolerance by its ability to alter the balance between pathogenic and regulatory T cells. Expression of PDL1 in donor tissue is critical for prevention of in situ graft pathology and chronic rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号