首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transglutaminases form a large family of intracellular and extracellular enzymes that catalyse the Ca2+-dependent post-translational modification of proteins. Despite significant advances in our understanding of the biological role of most mammalian transglutaminase isoforms, recent findings suggest new scenarios, most notably for the ubiquitous tissue transglutaminase. It is becoming apparent that some transglutaminases, normally expressed at low levels in many tissue types, are activated and/or overexpressed in a variety of diseases, thereby resulting in enhanced concentrations of cross-linked proteins. As applies to all enzymes that exert their metabolic function by modifying the properties of target proteins, the identification and characterization of the modified proteins will cast light on the functions of transglutaminases and their involvement in human diseases. In this paper we review data on the properties of mammalian transglutaminases, particularly as regards their protein substrates and the relevance of transglutaminase-catalysed reactions in physiological and disease conditions.  相似文献   

2.
All proteins end with a carboxyl terminus that has unique biophysical properties and is often disordered. Although there are examples of important C-termini functions, a more global role for the C-terminus is not yet established. In this review, we summarize research on C-termini, a unique region in proteins that cells exploit. Alternative splicing and proteolysis increase the diversity of proteins and peptides in cells with unique C-termini. The C-termini of proteins contain minimotifs, short peptides with an encoded function generally characterized as binding, posttranslational modifications, and trafficking. Many of these activities are specific to minimotifs on the C-terminus. Approximately 13% of C-termini in the human proteome have a known minimotif, and the majority, if not all of the remaining termini have conserved motifs inferring a function that remains to be discovered. C-termini, their predictions, and their functions are collated in the C-terminome, Proteus, and Terminus Oriented Protein Function INferred Database (TopFIND) database/web systems. Many C-termini are well conserved, and some have a known role in health and disease. We envision that this summary of C-termini will guide future investigation of their biochemical and physiological significance.  相似文献   

3.
4.
p120(ctn) binds to the cytoplasmic domain of cadherins but its role is poorly understood. Colo 205 cells grow as dispersed cells despite their normal expression of E-cadherin and catenins. However, in these cells we can induce typical E-cadherin-dependent aggregation by treatment with staurosporine or trypsin. These treatments concomitantly induce an electrophoretic mobility shift of p120(ctn) to a faster position. To investigate whether p120(ctn) plays a role in this cadherin reactivation process, we transfected Colo 205 cells with a series of p120(ctn) deletion constructs. Notably, expression of NH2-terminally deleted p120(ctn) induced aggregation. Similar effects were observed when these constructs were introduced into HT-29 cells. When a mutant N-cadherin lacking the p120(ctn)-binding site was introduced into Colo 205 cells, this molecule also induced cell aggregation, indicating that cadherins can function normally if they do not bind to p120(ctn). These findings suggest that in Colo 205 cells, a signaling mechanism exists to modify a biochemical state of p120(ctn) and the modified p120(ctn) blocks the cadherin system. The NH2 terminus-deleted p120(ctn) appears to compete with the endogenous p120(ctn) to abolish the adhesion-blocking action.  相似文献   

5.
Magnetotactic multicellular aggregates and many-celled magnetotactic prokaryotes have been described as spherical organisms composed of several Gram-negative bacteria capable to align themselves along magnetic fields and swim as a unit. Here we describe a similar organism collected in a large hypersaline lagoon in Brazil. Ultrathin sections and freeze fracture replicas showed that the cells are arranged side by side and face both the external environment and an internal acellular compartment in the center of the organism. This compartment contains a belt of filaments linking the cells, and numerous membrane vesicles. The shape of the cells approaches a pyramid, with the apex pointing to the internal compartment, and the basis facing the external environment. The contact region of two cells is flat and represents the pyramid faces, while the contacts of three or more cells contain cell projections and represent the edges. Freeze-fracture replicas showed a high concentration of intramembrane particles on the edges and also in the region of the outer membrane that faces the external environment. Dark field optical microscopy showed that the whole organism performs a coordinated movement with either straight or helicoidal trajectories. We conclude that the organisms described in this work are, in fact, highly organized prokaryotic multicellular organisms.  相似文献   

6.
Acidification inside membrane compartments is a common feature of all eukaryotic cells. The acidic milieu is involved in many physiological processes including secretion, protein processing, and others. However, its cellular relevance has not been well established beyond the results of in vitro studies involving cultured cell systems. In the last decade, human and mouse genetics have revealed that the acidification machinery is implicated in multiple pathophysiological disorders, and thus our understanding of physiological consequences of the defective acidification in multicellular organisms has improved. In invertebrates including Drosophila and nematodes, mutations of V-ATPase were found to lead the development of rather unexpected phenotypes. Studies have suggested that V-ATPase may be involved in membrane fusion and vesicle formation, important processes for membrane trafficking, and have further implied its involvement in cell–cell fusion. This rather novel idea arose from the phenotypes associated with genetic disorders involving V-ATPase genes in various genetic model systems. In this article, we focus and overview the non-classical, beyond proton-pumping function of the vacuolar-type ATPase in exo/endocytic systems.  相似文献   

7.
Matrin 3 is an integral component of nuclear matrix architecture that has been implicated in interacting with other nuclear proteins and thus modulating the activity of proximal promoters. In this study, we evaluated the contribution of this protein to proliferation of endothelial cells. To selectively modulate matrin 3 expression, we used siRNA oligonucleotides and transfection of cells with a pEGFP-N1-Mtr3. Our data indicate that downregulation of matrin 3 is responsible for reduced proliferation and leads to necrosis of endothelial cells. This conclusion is supported by observations that reducing matrin 3 expression results in (a) producing signs of necrosis detected by PI staining, LDH release, and scatter parameters in flow cytometry, (b) affecting cell cycle progression. It does not cause (c) membrane asymmetry of cells as indicated by lack of Annexin V binding as well as (d) activation of caspase 3 and cleavage of PARP. We conclude that matrin 3 plays a significant role in controlling cell growth and proliferation, probably via formation of complexes with nuclear proteins that modulate pro- and antiapoptotic signaling pathways. Thus, degradation of matrin 3 may be a switching event that induces a shift from apoptotic to necrotic death of cells.  相似文献   

8.
Adhesion and signaling by integrins require their dynamic association with nonintegrin membrane proteins. One such protein, the glycolipid-anchored urokinase receptor (uPAR), associates with and modifies the function of the beta(2)-integrin Mac-1 (CD11b/CD18). In this study, a critical non-I-domain binding site for uPAR on CD11b (M25; residues 424-440) is identified by homology with a phage display peptide known to bind uPAR. Recombinant soluble uPAR and cells expressing uPAR bound to immobilized M25, binding being promoted by urokinase and blocked by soluble M25, but not a scrambled control or homologous peptides from other beta(2)-associated alpha-chains. Mac-1, but not a mutated Mac-1 in which M25 was replaced with the homologous sequence of CD11c, co-precipitated with uPAR. In the beta-propeller model of alpha-chain folding, M25 spans an exposed loop on the ligand-binding, upper surface of alphaM, identifying uPAR as an atypical alphaM ligand. Although not blocking ligand binding to Mac-1, M25 (25-100 microM) inhibited leukocyte adhesion to fibrinogen, vitronectin, and cytokine-stimulated endothelial cells. M25 also blocked the association of uPAR with beta(1)-integrins and impaired beta(1)-integrin-dependent spreading and migration of human vascular smooth muscle cells on fibronectin and collagen. These observations indicate that uPAR associates with integrins directly and that disruption of this association broadly impairs integrin function, suggesting a novel strategy for regulation of integrins in the settings of inflammation and tumor progression.  相似文献   

9.
The architecture of the extracellular matrix (ECM) directs cell behavior by providing spatial and mechanical cues to which cells respond. In addition to soluble chemical factors, physical interactions between the cell and ECM regulate primary cell processes, including differentiation, migration, and proliferation. Advances in microtechnology and, more recently, nanotechnology provide a powerful means to study the influence of the ECM on cell behavior. By recapitulating local architectures that cells encounter in vivo, we can elucidate and dissect the fundamental signal transduction pathways that control cell behavior in critical developmental, physiological, and pathological processes.  相似文献   

10.
11.
12.
We demonstrate that neural crest cell-cell adhesion, cell-substrate adhesion, and ultimately cell motility, are highly dependent on the balanced action of tyrosine kinases and tyrosine phosphatases. Neural crest cell migration on fibronectin is diminished in the presence of the tyrosine phosphatase inhibitor vanadate or tyrosine kinase inhibitor herbimycin A, while cadherin-rich cell-cell adhesions are significantly increased. In contrast, cells treated with the kinase inhibitor genistein have decreased motility, rearrange rapidly and reversibly into a pavement-like monolayer, but have no increase in cadherin interactions. Genistein-sensitive tyrosine kinases may therefore abrogate a latent sensitivity of neural crest cells to contact-mediated inhibition of movement. Furthermore, we show that the activity of herbimycin A-sensitive kinases is necessary for focal adhesion formation in these cells. Moreover, the size and distribution of these adhesions are acutely sensitive to the actions of tyrosine phosphatases and genistein-sensitive kinases. We propose that in migrating neural crest cells there is a balance in phosphotyrosine signalling which minimises both cell-cell adhesion and contact inhibition of movement, while enhancing dynamic cell-substrate interactions and thus the conditions for motility.  相似文献   

13.
Although generally accepted to play an important role in development, the precise functional significance of NCAM remains to be elucidated. Correlative and interventive studies suggest a role for polysialylated NCAM in neurite elaboration. In the adult NCAM polysialylation continues to be expressed in regions of the central nervous system which retain neuroplastic potential. During memory formation modulation of polysialylation on the synapse-enriched isoform of NCAM occurs in the hippocampus. The polysialylated neurons of this structure have been located at the border of the granule cell layer and hilar region of the dentate and their number increases dramatically during memory consolidation. The converse is also true for a profound decline in the basal number of polysialylated neurons occurs with ageing when neural plasticity becomes attenuated. In conclusion, it is suggested that NCAM polysialylation regulates ultrastructural plasticity associated with synaptic elaboration.Abbreviations PSA polysialic acid - NCAM neural cell adhesion molecule - SGL sub-granular cell layer - MF mossy fibers Special issue dedicated to Dr. Robert Balazs.  相似文献   

14.
Human and experimental heart failure is characterized by increases in type-1 protein phosphatase activity, which may be partially attributed to inactivation of its endogenous regulator, protein phosphatase inhibitor-1. Inhibitor-1 represents a nodal integrator of two major second messenger pathways, adenosine 3',5'-cyclic monophosphate (cAMP) and calcium, which mediate its phosphorylation at threonine 35 and serine 67, respectively. Here, using recombinant inhibitor-1 wild-type and mutated proteins, we identified a novel phosphorylation site in inhibitor-1, threonine 75. This phosphoamino acid was phosphorylated in vitro by protein kinase Calpha independently and to the same extent as serine 67, the previous protein kinase Calpha-identified site. Generation of specific antibodies for the phosphorylated and dephosphorylated threonine 75 revealed that this site is phosphorylated in rat and dog hearts. Adenoviral-mediated expression of the constitutively phosphorylated threonine 75 inhibitor-1 in isolated myocytes was associated with specific stimulation of type-1 protein phosphatase activity and marked inhibition of the sarcoplasmic calcium pump affinity for calcium, resulting in depressed contractility. Thus, phosphorylation of inhibitor-1 at threonine 75 represents a new mechanism of cardiac contractility regulation, partially through the alteration of sarcoplasmic reticulum calcium transport activity.  相似文献   

15.
Neural activity results in long term changes that underlie synaptic plasticity. To examine the molecular basis of activity-dependent plasticity, we have used differential cloning techniques to identify genes that are rapidly induced in brain neurons by synaptic activity. Here, we identify a novel cadherin molecule Arcadlin (activity-regulated cadherin-like protein). arcadlin mRNA is rapidly and transiently induced in hippocampal granule cells by seizures and by N-methyl-D-aspartate-dependent synaptic activity in long term potentiation. The extracellular domain of Arcadlin is most homologous to protocadherin-8; however, the cytoplasmic region is distinct from that of any cadherin family member. Arcadlin protein is expressed at the synapses and shows a homophilic binding activity in a Ca2+-dependent manner. Furthermore, application of Arcadlin antibody reduces excitatory postsynaptic potential amplitude and blocks long term potentiation in hippocampal slices. Its close homology with cadherins, its rapid inducibility by neural activity, and its involvement in synaptic transmission suggest that Arcadlin may play an important role in activity-induced synaptic reorganization underlying long term memory.  相似文献   

16.
Mitochondrial Ca(2+) homeostasis is today at the center of wide interest in the scientific community because of its role both in the modulation of numerous physiological responses and because of its involvement in cell death. In this review, we briefly summarize a few basic features of mitochondrial Ca(2+) handling in vitro and within living cells, and its involvement in the modulation of Ca(2+)-dependent signaling. We then discuss the role of mitochondrial Ca(2+) in the control of apoptotic death, focusing in particular on the effects of pro- and anti-apoptotic proteins of the Bcl-2 family. Finally, the potential involvement of Ca(2+) and mitochondria in the development of two diseases, Ullrich muscular dystrophy and familial Alzheimer's disease, is briefly discussed.  相似文献   

17.
Chromatin is organized into a repeating structure (nucleosome) made up of proteins and DNA. Micrococcal nuclease and DNAase I have been used to probe this structure in nuclear populations from three tissues (liver, brain, and heart) of the inbred mouse strain C57BL at different ages. For those parameters examined, for each tissue, chromatin contained essentially the same features of nucleosomal organization, regardless of the age of the mouse. Thus, the rate and extent of nuclease digestion and the size of the DNA repeat unit and nucleosome core are not significantly different as a function of age. However, the accessibility of internucleosomal DNA to micrococcal nuclease, as determined by measuring the DNA size distribution after nuclease cutting, may be partially limited in chromatin of brain (but not liver or heart) of older animals. These results indicate that there are no gross, age-related changes in the conformational state or organization of chromatin in these tissues. The results do not exclude smaller alterations in chromatin that might occur with age, which the current methodology might not be sensitive enough to detect.  相似文献   

18.
Ren D  Li M  Duan C  Rui L 《Cell metabolism》2005,2(2):95-104
Leptin regulates energy balance and body weight by activating its receptor LEPRb and multiple downstream signaling pathways, including the STAT3 and the IRS2/PI 3-kinase pathways, in the hypothalamus. Leptin stimulates activation of LEPRb-associated JAK2, which initiates cell signaling. Here we identified SH2-B, a JAK2-interacting protein, as a key regulator of leptin sensitivity, energy balance, and body weight. SH2-B homozygous null mice were severely hyperphagic and obese and developed a metabolic syndrome characterized by hyperleptinemia, hyperinsulinemia, hyperlipidemia, hepatic steatosis, and hyperglycemia. The expression of hypothalamic orexigenic NPY and AgRP was increased in SH2-B(-/-) mice. Leptin-stimulated activation of hypothalamic JAK2 and phosphorylation of hypothalamic STAT3 and IRS2 were significantly impaired in SH2-B(-/-) mice. Moreover, overexpression of SH2-B counteracted PTP1B-mediated inhibition of leptin signaling in cultured cells. Our data suggest that SH2-B is an endogenous enhancer of leptin sensitivity and required for maintaining normal energy metabolism and body weight in mice.  相似文献   

19.
Identification of a cadherin cell adhesion recognition sequence   总被引:24,自引:1,他引:23  
The molecular mechanisms by which the cadherins interact with one another to promote cell adhesion have not been elucidated. In particular, the amino acid sequences of the cadherin cell adhesion recognition sites have not been determined. Here we demonstrate that synthetic peptides containing the sequence HAV, which is common to all of the cadherins, inhibit two processes (compaction of eight-cell-stage mouse embryos and rat neurite outgrowth on astrocytes) that are known to be mediated by cadherins. The data suggest that the tripeptide HAV is a component of a cadherin cell adhesion recognition sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号