首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new checklist of mosquitoes (Culicidae) recorded in the Asian part of Russia includes 79 species. The checklist is provided with taxonomic comments and compared with ones compiled by previous authors. In a comparison to the checklist of Kukharchuk (1980) including 73 species, 10 species are added into the present checklist and 6 species mentioned by this author are excluded, as far they were not actually found in Asian part of Russia. The names of 9 species are chanced according to the International Code of Zoological Nomenclature (1966). In the checklist of Stojanovich and Scott (1995) including 64 species, 5 species were included erraneously and 21 species were missed. The classification and valid species names are listed according to the Catalog of the Mosquitoes of the World (Knight, Stone, 1977) and its supplements (Knight, 1978; Ward, 1984, 1992; Gaffigan, Ward, 1985), except 5 species. These species (Aedes implicatus, Ae. esoensis, Ae. rossicus, Ae. albescens, Ae. subdiversus) are considered in the comments to the checklist.  相似文献   

2.
3.
在云南省西南边境9县市捕获伊蚊属雌性成蚊16种19367只,用细胞法和乳鼠法分离病毒。从185批6491只白纹伊蚊中分离到病毒2株,从50批1605只剌扰伊蚊中分离到病毒2株,从23批772只窄翅伊蚊中分离到病毒2株,从4批103只阿萨姆伊蚊中分离到病毒1株。其它12种共10396只伊蚊的病毒分离物为阴性。分离到的7株病毒经免疫荧光、酶免疫、血凝抑制和中和试验鉴定,均为乙型脑炎病毒(JEvirus)。白纹伊蚊是野外竹林的优势蚊种。分析认为白纹伊蚊在当地乙型脑炎病毒保存和传播中起重要作用,刺扰伊蚊、窄翅伊蚊和阿萨姆伊蚊亦可参与该病毒的传播。  相似文献   

4.
The Mariae species complex, consisting of Aedes mariae, Aedes phoeniciae, and Aedes zammitii, has a limited distribution worldwide. All three species are found in rocky habitats on the coastal areas of Mediterranean countries. Aedes phoeniciae and Ae. zammitii are two members of the Mariae complex that exist in Turkey. The aim of this study was to determine the distribution pattern and genetic structure of Ae. zammitii along the Mediterranean and Aegean regions. For this purpose, larval and adult samples of Ae. zammitii were collected from 19 different rocky habitats along the coastal regions of Antalya, Mu?la, Ayd?n, ?zmir, Bal?kesir, and Çanakkale provinces. DNA isolation was performed primarily from collected samples, and mitochondrial NADH dehydrogenase 4 (ND4) gene was amplified by polymerase chain reaction. Based on ND4 sequence analyses, 21 haplotypes were detected along the distribution range of the species. Analyses of molecular variance (AMOVA) and spatial analyses of molecular variance (SAMOVA) indicated six groups, and most of the variation was among groups, demonstrating the population structuring at group level. Isolation by distance analyses (IBD) showed a correlation between geographic and genetic distances.  相似文献   

5.
The population genetics study is crucial as it helps in understanding the epidemiological aspects of dengue and help improving a vector control measures. This research aims to investigate the population genetics structure of two common species of Aedes mosquitoes in Penang; Aedes aegypti and Aedes albopictus using Cytochrome Oxidase I (COI) mitochondrial DNA (mtDNA) marker. Molecular investigations were derived from 440 bp and 418 bp mtDNA COI on 125 and 334 larvae of Aedes aegypti and Aedes albopictus respectively, from 32 locations in Penang. All samples were employed in the BLASTn for species identification. The haplotype diversity, nucleotide diversity, neutrality test and mismatch distribution analysis were conducted in DnaSP version 5.10.1. AMOVA analysis was conducted in ARLEQUIN version 3.5 and the phylogenetic reconstructions based on maximum likelihood (ML) and neighbor-joining (NJ) methods were implemented in MEGA X. The relationships among haplotypes were further tested by creating a minimum spanning tree using Network version 4.6.1. All samples were genetically identified and clustered into six distinct species. Among the species, Ae. albopictus was the most abundant (67.2%), followed by Ae. aegypti (25.2%) and the rest were counted for Culex sp. and Toxorhynchites sp. Both Ae. aegypti and Ae. albopictus show low nucleotide diversity (π) and high haplotype diversity (h), while the neutrality test shows a negative value in most of the population for both species. There are a total of 39 and 64 haplotypes recorded for Ae. aegypti and Ae. albopictus respectively. AMOVA analysis revealed that most of the variation occurred within population for both species. Mismatch distribution analysis showed bimodal characteristic of population differentiation for Ae. aegypti but Ae. albopictus showed unimodal characteristics of population differentiation. Genetic distance based on Tamura-Nei parameter showed low genetic divergent within population and high genetic divergent among population for both species. The maximum likelihood tree showed no obvious pattern of population genetic structure for both Ae. aegypti and Ae. albopictus from Penang and a moderate to high bootstrap values has supported this conclusion. The minimum spanning network for Ae. aegypti and Ae. albopictus showed five and three dominant haplotypes respectively, which indicates a mixture of haplotypes from the regions analysed. This study revealed that there is no population genetic structure exhibited by both Ae. aegypti and Ae. albopictus in Penang. Mutation has occurred rapidly in both species and this will be challenging in controlling the populations. However, further analysis needed to confirm this statement.  相似文献   

6.
Six mosquito species were identified in a survey of containers associated with 347 households in four villages in American Samoa. Aedes polynesiensis Marks (Diptera: Culicidae) and Aedes aegypti (L) were the most abundant species, representing 57% and 29% of the mosquitoes identified. Culex quinquefasciatus (Say), Culex annulirostris (Skuse), Aedes oceanicus (Belkin) and Toxorhynchites amboinensis (Doleschall) were also found. Aedes aegypti and Ae. polynesiensis showed distinct differences in their use of containers, preferring large and small containers, respectively. By contrast with previous studies, Ae. polynesiensis utilized domestic and natural containers with equal frequency, whereas Ae. aegypti continued to be found predominantly in domestic containers. Only 15% of containers holding immature mosquitoes included pupae and fewer than 10 Aedes spp. pupae were found in most containers with pupae. An estimated 2289 Ae. polynesiensis and 1640 Ae. aegypti pupae were found in 2258 containers. The presence of both species in the same container did not affect the mean density of either species for larvae or pupae. Glass jars, leaf axils, tree holes and seashells produced few Aedes spp. pupae in any of the study villages. Overall, 75% of Ae. polynesiensis pupae were found in buckets, ice-cream containers and tyres, with <7% being produced in natural containers, whereas 82% of Ae. aegypti pupae were found in 44-gallon (US) drums ( approximately 166L), buckets and tyres. Source reduction efforts targeting these container types may yield significant reductions in both Ae. polynesiensis and Ae. aegypti populations in American Samoa.  相似文献   

7.
1. Mosquitoes were sampled with five suction traps, from May to October 1983, at a forest site in south-central Sweden. 2. Twenty-three species of mosquitoes were identified among the total of 3108 females collected: 4% of them in an unbaited trap, 3% in a trap baited with two frogs, 24% with a guinea-pig, 28% with a hen and 40% in a trap baited with a rabbit. 3. The dominant species of Culicidae trapped were 39% Aedes communis (De Geer), 21% Ae. cinereus Meigen, 14% Coquillettidia richiardii (Ficalbi), 8% Ae. punctor (Kirby) and 4% Culiseta morsitans (Theobald). 4. Aedes annulipes (Meigen), Ae. cantans (Meigen), Ae. cinereus, Ae. communis and Ae. punctor were mostly attracted to the rabbit, whereas Culiseta morsitans, Culex pipiens L. and/or Cx torrentium Martini were strongly ornithophilic. 5. Based on these and previously published data the ecological and behavioural potential of the mosquitoes to transmit Sindbis, Inkoo, Tahyna and Batai viruses, tularaemia (caused by Francisella tularensis) and Ixodes-borne borreliosis (caused by Borrelia burgdorferi) in Fennoscandia is discussed. 6. The data support the hypothesis that Sindbis virus, which is enzootic in bird populations in Fennoscandia, is vectored between birds by Cx pipiens/torrentium and Cs. morsitans, and that abundant Aedes spp., particularly Ae. cinereus, which feed on both birds and mammals, are primary link vectors from infective birds to man and other mammals.  相似文献   

8.
A sticky trap designed to capture gravid Aedes (Stegomyia) aegypti mosquitoes, MosquiTRAP, has been evaluated for monitoring this species in Brazil. However, the effects of trap densities on the capture rate of Ae. aegypti females and the sensitivity of vector detection are still unknown. After a preliminary study has identified areas of high and low female mosquito abundance, a set of experiments was conducted in four neighbourhoods of Belo Horizonte (state of Minas Gerais, Brazil) using densities of 1, 2, 4, 8, 16, 32 and 64 traps per block. Trap sensitivity (positive MosquiTRAP index) increased significantly when 1-8 MosquiTRAPs were installed per block in both high and low abundance areas. A strong fit was obtained for the total number of mosquitoes captured with increasing trap densities through a non-linear function (Box-Lucas) (r2 = 0,994), which likely exhibits saturation towards an equilibrium level. The capacity of the Mean Female Aedes Index to distinguish between areas of high and low Ae. aegypti abundance was also investigated; the achieved differentiation was shown to be dependent on the MosquiTRAP density.  相似文献   

9.
We determined the sequences of cDNA encoding Inhibitor of Apoptosis Protein 1 (IAP1) homologues from Aedes triseriatus, Aedes albopictus, Aedes aegypti, Culex pipiens and Culex tarsalis. The cDNAs encode translation products that share > or = 84% sequence similarity. The IAP1 mRNA of each mosquito species exists as 3-5 distinct variants due to the presence of heterogeneous sequences at the distal end of their 5'UTRs. Partial genomic sequencing upstream of the 5' end of the Ae. triseriatus IAP1 gene, and analysis of the Ae. aegypti genomic sequence, suggest that these mRNA variants are generated by alternative splicing. Each IAP1 mRNA variant from Ae. triseriatus and Cx. pipiens was detected by RT-PCR in all mosquito life-stages and adult tissues examined, and the relative concentration of each Ae. triseriatus IAP mRNA variant in various tissues was determined.  相似文献   

10.
The aim of the study was to determine the existence of Ascogregarina spp. in larvae of Aedes albopictus and Aedes aegypti collected in urban and suburban areas of Manaus, Amazon region, Brazil. Between May 2004 and July 2005, the mid-gut of 3rd and 4th instar larvae, collected in tire traps in six neighborhoods of Manaus, was examined for the presence of trophozoites of Ascogregarina. Coexistence of Ae. albopictus larvae infected by A. taiwanensis, and Ae. aegypti larvae by A. culicis, was detected in traps in the field. The percentage of Ae. albopictus larvae infected by A. taiwanensis ranged from 21% to 93.5% and of Ae. aegypti larvae infected by A. culicis from 22% to 95%. The mean infection intensity was similar in both species of Aedes. In traps located in Mauazinho, the replacement of Ae. aegypti by Ae. albopictus larvae was observed. In Manaus, Ae. albopictus larvae were parasitized by A. taiwanensis, and Ae. aegypti larvae by A. culicis. Infection rates were high when the species of Aedes were found separately.  相似文献   

11.
Adults and immatures of Aedes mosquito populations were collected at temperatures between 40 and 44°C (summer), while larvae were collected at 0°C (winter). Major mosquito activities were observed from February to mid-December at various collection sites that yielded high populations of Aedes spp. from May to September, and high populations of Culex spp. and Anopheles spp. from March to September. In June to July, mosquito activity was suspended because the relative humidity was high (70%); a result of the monsoon rains. In August, with temperature ranging from 38 to 42°C, the populations of Culex , Anopheles and Aedes began to increase (36.8, 32.1 and 26.3%, respectively). Population estimates (through standard prototype Centers for Disease Control (CDC) and Biogents (BG)-sentinel) and species composition of Aedes in forest habitats indicated a rapid increase in the populations of Ae. albopictus (52.3%), Ae. aegypti (19.1%) and Ae. vittatus (28.5%) following the rainy season in July. Areas positive for Ae. albopictus had identical population levels and distribution ranges of Ae. vittatus , however, there were no Ae. aegypti in Ae. albopictus areas from August to September. The population level, seasonal distribution, habitat and areas of adult activity marked by global positioning system (GPS) coordinates are being used for reference and for species composition data of Anopheles spp. (2), Culex spp. (10) and Aedes spp. (5) in addition to associated temperature, relative humidity and physico-chemical factors of larval habitat. Global meteorological changes have caused an expansion of the active period, leading to the mosquito's possibility of being a vector of disease increasing, resulting in the spread of dengue fever.  相似文献   

12.
The chromosomal localization and genomic organization of three cloned repetitive DNA fragments (viz., H-76, H-61, and H-19) isolated from theAedes albopictus genome have been examined inAe. albopictus and six otherAedes species:Ae. aegypti, Ae. seatoi, Ae. flavopictus, Ae. polynesiensis, Ae. alcasidi andAe. katherinensis. The results fromin situ and Southern hybridization analyses show that the sequences homologous to cloned repetitive DNA fragments are dispersed throughout the genome in each species. The sequences homologous to these cloned repetitive DNA fragments are also found inHaemagogus equinus, Tripteroides bambusa andAnopheles quadrimaculatus and are dispersed in their genomes. Data indicate divergence in the amount and the structural organization of sequences homologous to these cloned fragments among mosquito species.  相似文献   

13.
Aedes mariae, Aedes phoeniciae and Aedes zammitii are three sibling species of the Mariae complex with a limited distribution. All these three species use semi-saline/saline rock pool habitats on the coastal areas of Mediterranean countries. The Eastern coast of the Mediterranean basin, including Turkey and Cyprus coasts, is a unique distribution area for Ae. phoeniciae. This study was designed to identify three sibling species of the Mariae complex based on molecular markers and also to determine the distribution pattern and genetic structure of the Ae. phoeniciae along the eastern Mediterranean basin. Larval and adult samples of Ae. zammitii and Ae. phoeniciae were collected from different rock pool habitats along the coastal regions of Turkey and Northern Cyprus. Species identifications were done primarily based on morphological identification key. Identifications were supported by using mitochondrial DNA cytochrome oxidase I (COI) and nuclear DNA Internal transcribed spacer 2 (ITS2) sequences. Population genetic analyses of Ae. phoeniciae were implemented based on NADH dehydrogenase 4 (ND4) sequence and 17 haplotypes were detected in the study area. Analyses of molecular variance (AMOVA) determined that the majority of the variation was within the populations (60.15 %) while variation between groups was 30.68 % and the variation within groups was 9.17 %, indicating low genetic structuring among groups.  相似文献   

14.
The invasion of a secondary forest within the city of Rio de Janeiro by Aedes aegypti and Ae. albopictus was evaluated from July 1997 to June 1998 through collections of immature stages in ovitraps set at 1 m, 10 m, 100 m, 500 m, and 1,000 m into the forest from houses on the periphery. Both mosquito species were much more abundant close to houses (1-10 m). Aedes aegypti was not collected beyond 100 m, while Ae. albopictus was the most abundant species overall and in ovitraps at all distances from houses. Abundances of Ae. albopictus were significantly correlated with time-lagged rainfall and with abundances of Ae. aegypti. Co-occurrences of Ae. albopictus in traps with Ae. aegypti and Limatus durhami, but not with Culex dolosus, were more likely close to houses. The results suggest that the urban forest is a refuge for both Aedes species, but especially for Ae. albopictus, whose abundance both near houses and in the forest raises concern that this invader may transmit arboviruses to humans that are presently restricted to the sylvan environment.  相似文献   

15.
The invasive oriental mosquito Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) was detected on Bioko Island for the first time in November 2001. It was found to be well established breeding in artificial containers at Planta, near Malabo, the capital of Equatorial Guinea. Associated species of mosquito larvae were Aedes aegypti (L.), Ae. africanus (Theobald), Culex near decens Theobald, Cx. duttoni Theobald, Cx. quinquefasciatus Say, Cx. tigripes De Grandpré & De Charmoy, Eretmapodites quinquevittatus Theobald and Mansonia africana (Theobald). This is the third tropical African country to be invaded by Ae. albopictus, which has recently spread to many parts of the Americas and Europe--with vector competence for dengue, yellow fever and other arboviruses. In the Afrotropical environment, it will be interesting to monitor the ecological balance and/or displacement between introduced Ae. albopictus and indigenous Ae. aegpyti (domestic, peri-domestic and sylvatic populations).  相似文献   

16.
The paper reports some observations on the subgenus Aedes (genus Aedes, Diptera, Culicidae) in northeast Italy. Two species were collected: Ae. cinereus and Ae. geminus, the latter recorded for the first time in Italy. Morphological, ecological and biological data of the two species are presented. The identification is possible only on the male hypopigium; larvae, pupae and adult females show no differential characters. For both species, the larval breeding sites were fresh water marshes mainly within woods; preimaginal development took place twice a year, in Spring and Autumn. The females were strongly anthropophilic. No biological differences between the two species were noticed, but more data are needed to ascertain their relationships and the presence of subtle biological divergences.  相似文献   

17.
Aedes albopictus (Diptera: Culicidae) was first reported in Central Africa in 2000, together with the indigenous mosquito species Aedes aegypti (Diptera: Culicidae). Because Ae. albopictus can also transmit arboviruses, its introduction is a public health concern. We undertook a comparative study in three Cameroonian towns (Sahelian domain: Garoua; equatorial domain: Douala and Yaoundé) in order to document infestation by the two species and their ecological preferences. High and variable levels of pre‐imaginal Ae. aegypti and Ae. albopictus infestation were detected. Only Ae. aegypti was encountered in Garoua, whereas both species were found in Douala and Yaoundé, albeit with significant differences in their relative prevalence. Peridomestic water containers were the most strongly colonized and productive larval habitats for both species. No major differences in types of larval habitat were found, but Ae. albopictus preferentially bred in containers containing plant debris or surrounded by vegetation, whereas Ae. aegypti tended to breed in containers located in environments with a high density of buildings. These findings may have important implications for vector control strategies.  相似文献   

18.
Mosquito species of the Aedes (Stegomyia) scutellaris (Walker) group (Diptera: Culicidae) are distributed across many islands of the South Pacific and include major regional vectors of filariasis, such as Aedes polynesiensis (Marks). Analysis of populations of Ae. polynesiensis at the extremes of its range, from Fiji and from Moorea, French Polynesia, using the rDNA ITS2 (internal transcribed spacer 2) region and six microsatellite markers showed considerable genetic differentiation between them (F(ST) = 0.298-0.357). Phylogenetic analysis of the Wolbachia endosymbionts in three members of the complex revealed that based on the wsp gene they are all very similar and belong to the Mel subgroup of the A clade, closely related to the Wolbachia strain present in the gall wasp Callyrhytis glandium (Giraud) (Hymenoptera: Cynipidae). By contrast they are only distantly related to the A-clade Wolbachia in Aedes albopictus (Skuse), a species closely allied to the Ae. scutellaris group. There was very low differentiation between the Wolbachia in the Moorea and Fiji populations of Ae. polynesiensis.  相似文献   

19.
Aedes albopictus (Diptera: Culicidae) distribution is bounded to a subtropical area in Argentina, while Aedes aegypti (Diptera: Culicidae) covers both temperate and subtropical regions. We assessed thermal and photoperiod conditions on dormancy status, development time and mortality for these species from subtropical Argentina. Short days (8 light : 16 dark) significantly increased larval development time for both species, an effect previously linked to diapause incidence. Aedes albopictus showed higher mortality than Ae. aegypti at 16 °C under long day treatments (16 light : 8 dark), which could indicate a lower tolerance to a sudden temperature decrease during the summer season. Aedes albopictus showed a slightly higher percentage of dormant eggs from females exposed to a short day, relative to previous research in Brazilian populations. Since we employed more hours of darkness, this could suggest a relationship between day‐length and dormancy intensity. Interestingly, local Ae. aegypti presented dormancy similar to Ae. albopictus, in accordance with temperate populations. The minimum dormancy in Ae. albopictus would not be sufficient to extend its bounded distribution. We believe that these findings represent a novel contribution to current knowledge about the ecophysiology of Ae. albopictus and Ae. aegypti, two species with great epidemiological relevance in this subtropical region.  相似文献   

20.

Priority effects (PE), wherein species colonizing a habitat early have a negative impact on later colonizers, can have profound and legacy effects on community organization. In temperate zones, larval mosquito habitats are emptied each year in the winter and recolonized in the spring. There are phenological differences among common species but the role of PE in these communities is largely unexplored. Aedes albopictus, the invasive tiger mosquito, is considered a superior competitor to resident species during the larval phase when conditions are initiated with same-staged heterospecific larvae. However in nature, Ae. albopictus hatches, and resumes activity, later in the spring than other species, suggesting it encounters larger later developed individuals, and denser populations, of species such as Aedes triseriatus. Additionally, despite their competitive inferiority, these species often coexist with Ae. albopictus in larval habitats, with Ae. albopictus often occurring at relatively low abundances in sylvan habitats. Using lab and near field experiments, we tested the hypothesis that PE with early hatching species reduces survivorship and population growth for the invasive Ae. albopictus. When Ae. albopictus larvae encountered larger, later developed heterospecific larvae at greater densities, under controlled lab conditions and in artificial and natural mesocosms, they experienced significant reductions in survival and estimated finite rate of population increase. Additionally, we found that intraguild predation of Ae. triseriatus on Ae. albopictus may be an important mechanism through which PE works. We conclude that PE is a potential mechanism for coexistence between invasive and resident mosquitoes and should be further explored.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号