首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
A murine monoclonal antibody, mAb 8523, raised against whole human pro-monocytic U937 cells recognizes an 18 kDa antigen in human neutrophils (PMN), as determined by immunoprecipitation and by immunodetection on Western blots of SDS-PAGE of PMN membrane fractions. That is 18 kDa antigen corresponds to the phagocyte peripheral benzodiazepine receptor (PBZDR) is evidenced by its co-migration with the 18 kDa covalently labeled PBZDR, detected by autoradiography, and their co-modulation upon phorbol-myristate-acetate activation of PMN. Purified mAb 8523 (IgG2b) is able to dose-dependently and specifically stimulate both the basal and the FMLP-induced oxidative burst of intact human PMN, assessed by luminol-amplified chemiluminescence. This property of the first described monoclonal antibody against PBZDR supports the implication of this receptor in NADPH-oxidase activation and consequently in phagocyte-dependent host defense mechanisms.  相似文献   

3.
Phorbol ester treatment of intact neutrophils both stimulates protein kinase C (PK-C) and causes the rapid proteolytic conversion to a cytosolic, co-factor independent fragment, protein kinase M (PK-M). In intact neutrophils, phorbol ester treatment activates the NADPH-oxidase, the enzyme responsible for the oxidative burst. Addition of purified PK-M to resting neutrophil light density membranes activated the NADPH-oxidase in the presence of PS, ATP and Mg2+. A 3.5-fold greater stimulation of oxidase (ca. 25 nmoles O2-/min/mg membrane protein) was obtained with comparable PK-M concentrations to that observed with the reconstituted PK-C system, and approximately 1/3 that obtained with arachidonic acid (AA) or SDS. In contrast to the reconstituted system using PK-C, PMA and Ca++ were neither required nor affected activity. The effect of PS was unexpected, since PK-M does not require phospholipids for enzymatic activity, and likely represents the action of PS on the oxidase itself or on another component in the plasma membrane fraction. Our studies demonstrate for the first time that purified PK-M permits reconstitution of a physiologic phorbol ester response.  相似文献   

4.
The human neutrophil respiratory burst, activated by phorbol 12-myristate 13-acetate (PMA), results from specific receptor-ligand binding and activation of the NADPH-oxidase in the plasma membrane. The role of granule membrane constituents has been elucidated with neutrophils disrupted by nitrogen cavitation and then fractionated in Percoll gradients to resolve four postnuclear fractions: cytoplasm, light membranes or gamma fraction (site of the NADPH-oxidase), a light granule (beta) fraction containing putative constituents of the NADPH-oxidase (cytochrome b-245 and an associated flavoprotein), and a fraction of heavy granules. Cytochrome b-245 is localized to two pools of specific granules within the beta fraction as assessed by differing sedimentation in narrow Percoll gradients and translocates upon PMA-stimulation from one of these specific granule sub-pools to the plasma membrane where it exhibits no change in its midpoint redox potential. Translocation of cytochrome b-245 parallels O2-production initiated by PMA stimulation as assessed in the time course of each activity. The finding of increased amounts of the b cytochrome in cytoplast membranes relative to plasma membranes of unstimulated cells suggests that the cytoplasts, devoid of granules yet capable of O2-generation upon PMA-stimulation, are useful in assessing post-translocation events in the activation pathway of the NADPH-oxidase. These data support the hypothesis that translocation of NADPH-oxidase components from an intracellular granular pool contributes to respiratory burst expression.  相似文献   

5.
TNF-alpha induces two distinct caspase-8 activation pathways   总被引:2,自引:0,他引:2  
Wang L  Du F  Wang X 《Cell》2008,133(4):693-703
The inflammatory response of mammalian cells to TNF-alpha can be switched to apoptosis either by cotreatment with a protein synthesis inhibitor, cycloheximide, or Smac mimetic, a small molecule mimic of Smac/Diablo protein. Cycloheximide promotes caspase-8 activation by eliminating endogenous caspase-8 inhibitor, c-FLIP, while Smac mimetic does so by triggering autodegradation of cIAP1 and cIAP2 (cIAP1/2), leading to the release of receptor interacting protein kinase (RIPK1) from the activated TNF receptor complex to form a caspase-8-activating complex consisting of RIPK1, FADD, and caspase-8. This process also requires the action of CYLD, a RIPK1 K63 deubiquitinating enzyme. RIPK1 is critical for caspase-8 activation-induced by Smac mimetic but dispensable for that triggered by cycloheximide. Moreover, Smac mimetic-induced caspase-8 activation is not blocked by endogenous c-FLIP. These findings revealed that TNF-alpha is able to induce apoptosis via two distinct caspase-8 activation pathways that are differentially regulated by cIAP1/2 and c-FLIP.  相似文献   

6.
To study the mechanisms of activation of human neutrophil gelatinase, the enzyme has been purified using a combination of chromatography on a DEAE-Sephacel and a gelatin-peptide-Sepharose column. On reducing SDS-polyacrylamide-gel electrophoresis the purified gelatinase ran as a single band of about 94,000 Da, and had a specific activity of 5624.4 units/mg of enzyme protein. When latent gelatinase was treated with trypsin, cathepsin G, neutrophil elastase, HgCl2 or urea, its activity was enhanced and the enzyme was processed and converted into species of the lower molecular mass. Upon activation, the protein band of 94,000 Da of reduced latent gelatinase underwent a decrease of about 6,000-12,000 Da. Formation of the species of lower molecular mass during urea activation could be blocked by the addition of EDTA.  相似文献   

7.
Arachidonate activation of the NADPH-oxidase in intact neutrophils and in a cell-free O2- generation system was compared to synergistic activation in response to arachidonate and agents that effect protein phosphorylation. In intact neutrophils, suboptimal doses of retinal which increase protein phosphorylation, or 4B-phorbol 12-myristate 13-acetate (PMA) an activator of protein kinase C, induced minimal O2- release, but primed neutrophils to release enhanced amounts of O2- in response to 2.5 microM arachidonate. In contrast to retinal or PMA, okadaic acid, a specific inhibitor of serine/threonine protein phosphatases, did not induce any release of O2-, but significantly increased the maximal rate and duration of O2- release in response to arachidonate. In the cell-free system, only arachidonate induced O2- generation. Consistent with previous findings, activation of the cell-free system was dependent of the presence of light membranes, cytosol, NADPH, Mg2+, and 82 microM arachidonate. Pretreatment of neutrophils with suboptimal doses of PMA or retinal had little effect on the arachidonate-stimulated release of O2- in cell-free preparations of these cells. However, cytosol (but not light membranes) from PMA or retinal-primed neutrophils was more effective in completing resting membrane NADPH-oxidase activity when compared to cytosol from resting cells. The addition of protein kinase C inhibitors staurosporine and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine decreased the effectiveness of PMA-primed cytosol to complete the cell-free system, but had little effect on cytosol obtained from cells primed with retinal. The addition of protein phosphatase inhibitors, p-nitrophenyl phosphate or okadaic acid to neutrophil cavitates increased 3-fold the release of O2- in cell-free preparations of these cells. Okadaic acid and p-nitrophenyl phosphate also increased the effectiveness of both cytosol and light membranes to complete the cell-free system when combined with cytosol or light membranes from resting neutrophils, respectively, indicating that both fractions are affected by the inhibition of protein phosphatase activity. These data indicate that increases in protein phosphorylation alone do not lead to the activation of the NADPH-oxidase, but in addition to the requirement of an anionic amphiphile, the release of O2- from intact neutrophils or in the cell-free system is increased by stimulus activation of protein kinase C or more impressively by inhibition of protein phosphatase activity.  相似文献   

8.
NADPH-oxidase activation by protein kinase C-isotypes   总被引:1,自引:0,他引:1  
The cell free activation of NADPH-Oxidase in membranes of mouse peritoneal macrophages by purified PKC-isotypes was investigated. Unstimulated intrinsic activity of PKC-isotypes showed little dependence on Ca2+ for activation of the oxidase. In the presence of TPA, the activation of the oxidase was greatly enhanced, and alpha-, and gamma-subtypes were strongly Ca2+ dependent in this system. Beta-, delta- and epsilon-subtypes were active both in the presence and absence of free Ca2+ ions. The results suggest that at resting Ca2+ levels certain PKC-isotypes can activate NADPH-oxidase.  相似文献   

9.
Extracellular acidification induces human neutrophil activation   总被引:3,自引:0,他引:3  
In the current work, we evaluated the effect of extracellular acidification on neutrophil physiology. Neutrophils suspended in bicarbonate-buffered RPMI 1640 medium adjusted to acidic pH values (pH 6.5-7.0) underwent: 1) a rapid transient increase in intracellular free calcium concentration levels; 2) an increase in the forward light scattering properties; and 3) the up-regulation of surface expression of CD18. By contrast, extracellular acidosis was unable to induce neither the production of H2O2 nor the release of myeloperoxidase. Acidic extracellular pH also modulated the functional profile of neutrophils in response to conventional agonists such as FMLP, precipiting immune complexes, and opsonized zymosan. It was found that not only calcium mobilization, shape change response, and up-regulation of CD18 expression but also production of H2O2 and release of myeloperoxidase were markedly enhanced in neutrophils stimulated in acidic pH medium. Moreover, extracellular acidosis significantly delayed neutrophil apoptosis and concomitantly extended neutrophil functional lifespan. Extracellular acidification induced an immediate and abrupt fall in the intracellular pH, which persisted over the 240-s analyzed. A similar abrupt drop in the intracellular pH was detected in cells suspended in bicarbonate-supplemented PBS but not in those suspended in bicarbonate-free PBS. A role for intracellular acidification in neutrophil activation is suggested by the fact that only neutrophils suspended in bicarbonate-buffered media (i.e., RPMI 1640 and bicarbonate-supplemented PBS) underwent significant shape changes in response to extracellular acidification. Together, our results support the notion that extracellular acidosis may intensify acute inflammatory responses by inducing neutrophil activation as well as by delaying spontaneous apoptosis and extending neutrophil functional lifespan.  相似文献   

10.
The phorbol myristate acetate (PMA) stimulation of the human neutrophil NADPH-oxidase has been demonstrated through the activation of protein kinase C (PK-C), using light membrane fractions from nitrogen-cavitated cells. Both arachidonic acid (AA) and sodium dodecyl sulfate (SDS) can also generate an active oxidase in cellfree systems. That the source of O2- with AA and SDS activation is the same NADPH-oxidase as previously studied was confirmed by the similar pH optima and Km values for NADPH as those previously described for the O2- -generating activity harvested from pre-stimulated human neutrophils. In contrast to the stimulation by PMA, however, the stimulation of the NADPH-oxidase by AA and SDS does not appear to require protein kinase C activation: the action of AA and SDS is independent of the addition of PK-C cofactors to the system, and the inhibitor of PK-C activity, H-7, had no effect on the stimulation by AA or SDS. AA and SDS activation are comparable, but the level of NADPH-oxidase expression is sixfold greater with each of these agents than that obtained with a reconstituted PK-C system. The basis of this difference in oxidase expression is unclear, but these findings suggest strongly that although activated PK-C is capable of stimulating a dormant NADPH-oxidase in a cellfree system, this is not the sole pathway for oxidase activation.  相似文献   

11.
Differential activation of four specific MAPK pathways by distinct elicitors   总被引:24,自引:0,他引:24  
Plant cells respond to elicitors by inducing a variety of defense responses. Some of these reactions are dependent on the activity of protein kinases. Recently, mitogen-activated protein kinases (MAPKs) have been identified to be activated by fungal and bacterial elicitors as well as by pathogen infection. In gel kinase assays of alfalfa cells treated with yeast cell wall-derived elicitor (YE) revealed that 44- and 46-kDa MAPKs are rapidly and transiently activated. Immunokinase assays with specific MAPK antibodies revealed that YE mainly activated the 46-kDa SIMK and the 44-kDa MMK3 and to a lesser extent the 44-kDa MMK2 and SAMK. When cells were treated with chemically defined elicitors potentially contained in the YE (chitin and N-acetylglucosamine oligomers, beta-glucan, and ergosterol), the four MAPKs were found to be activated to different levels and with different kinetics. Whereas SIMK and SAMK have been found to be activated by a number of diverse stimuli, MMK3 is activated during mitosis and was therefore assumed to participate in cell division (). No physiological process could be associated with MMK2 activity so far. This is the first report that MMK2 and MMK3 can be activated by external stimuli. Overall, our findings indicate that plant cells can sense different cues of a given microorganism through the activation of multiple MAPKs.  相似文献   

12.
Identification of novel GTP-binding proteins in the human neutrophil   总被引:5,自引:0,他引:5  
We describe here the existence of previously undescribed GTP-binding proteins within the human neutrophil. These proteins specifically bind guanine nucleotides under conditions in which the previously characterized G-proteins are unable to bind. We have partially purified these proteins and present both functional and immunologic data which indicate that they are unrelated to Gn, the major neutrophil pertussis toxin substrate. An additional protein, of apparent molecular mass 22 kDa, may be related to the ras G-protein family. Analysis of the structural and functional characteristics of these novel proteins will promote a better understanding of the process of neutrophil activation.  相似文献   

13.
NADPH-oxidase activation and cognition in Alzheimer disease progression   总被引:1,自引:0,他引:1  
Superoxide production via NADPH-oxidase (NOX) has been shown to play a role in a variety of neurological disorders, including Alzheimer disease (AD). To improve our understanding of the NOX system and cognitive impairment, we studied the various protein components of the phagocytic isoform (gp91phox, or NOX2) in the frontal and temporal cortex of age- and postmortem-matched samples. Individuals underwent antemortem cognitive testing and postmortem histopathologic assessment to determine disease progression and assignment to one of the following groups: no cognitive impairment (NCI), preclinical AD, mild cognitive impairment (MCI), early AD, and mild-to-moderate AD. Biochemical methods were used to determine overall NOX activity as well as levels of the various subunits (gp91phox, p67phox, p47phox, p40phox, and p22phox). Overall enzyme activity was significantly elevated in the MCI cohort in both cortical regions compared to the NCI cohort. This activity level remained elevated in the AD groups. Only the NOX cytosolic subunit proteins (p67phox, p47phox, and p40phox ) were significantly elevated with disease progression; the membrane-bound subunits (gp91phox and p22phox) remained stable. In addition, there was a robust correlation between NOX activity and the individual's cognitive status such that as the enzyme activity increased, cognitive performance decreased. Collectively, these data show that upregulated NADPH-oxidase in frontal and temporal cortex suggests that increases in NOX-associated redox pathways might participate in early pathogenesis and contribute to AD progression.  相似文献   

14.
CD2 triggering of human T lymphocyte activation has been associated with the activation of different interacting protein kinases, including protein kinase C (PKC). However the precise roles of its phosphorylated substrates are still unknown. We show here that PKC-dependent and -independent pathways are responsible for the CD2-induced phosphorylation of stathmin, a ubiquitous soluble phosphoprotein, most likely acting as a general intracellular relay integrating various second messenger pathways. The phosphorylated variants of stathmin provide a fingerprint reflecting the second messenger pathway(s) stimulated. The respective roles of both PKC and stathmin in the regulation of T lymphocyte proliferation are discussed.  相似文献   

15.
The fluoresceinated chemotactic factors, C5a, formyl-methionyl-leucyl-phenylalanyl-lysine (FMLPL), and casein were used in conjunction with flow cytometry to examine chemotactic factor receptor expression on polymorphonuclear leukocytes (PMN) activated with phorbol myristate acetate (PMA), C5a, or formyl-methionyl-leucyl-phenylalanine. Activation with PMA resulted in a dose-dependent increase in binding of fluorescein-labeled (FL)-casein and (FL-FMLPL) over the range of PMA concentrations from 0.5 to 50 ng/ml. In contrast, activation of PMN with PMA resulted in a dose-dependent decrease in FL-C5a binding, and activation with concentrations above 5 ng/ml resulted in a complete loss of binding. This loss of binding was not caused by inactivation of the ligand or prevented by the addition of superoxide dismutase and catalase or protease inhibitors. Furthermore, incubation of PMN with supernatants from PMN stimulated to degranulate did not reduce the availability of C5a receptors. This pattern of increased FMLPL and casein binding with decreased C5a binding was also observed with cytochalasin B-pretreated PMN that were stimulated with chemotactic factors. Parallel studies of superoxide anion generation demonstrated that PMA-treated PMN were still responsive to formyl-methionyl-leucyl-phenylalanine, but not to C5a. These data demonstrate that the activation of PMN up-regulates formyl peptide and casein receptors whereas C5a receptors are down-regulated under similar conditions.  相似文献   

16.
Context: The histamine H4 receptor functionally expressed on human mast cells and their signaling pathways for the production of IL-13 and RANTES have never been analyzed side by side in a directly comparable manner.

Objective: Therefore, the aim of the study was to investigate signaling transduction pathways of H4R via ERK1/2, Akt and NFκB leading to the induction of inflammatory cytokine expression.

Materials and methods: In the present study, HMC-1 cells and CBMCs were pretreated individually with H4R antagonist JNJ7777120, H1R antagonist mepyramine and signaling molecule inhibitors PD 98059, LY294002, Bay 117082 followed by stimulation was done with or without histamine or 4-MH. Furthermore, the siRNA mediated H4R gene silencing effects are studied at the H4R protein expression level and also signal transduction level.

Results: We found that the pretreatment with JNJ7777120 and H4R gene silencing decreased histamine, 4-MH induced phosphorylation of ERK1/2, Akt and NFκB-p65. Moreover, PD 98059, LY294002 and Bay 117082, which respectively inhibited the histamine and 4-methylhistamine induced phosphorylation of ERK1/2, Akt and NFκB-p65 respectively. We also found that the activation of H4R caused the release of IL-13 and RANTES on human mast cells. The MEK inhibitor PD98059 blocked H4R mediated RANTES/CCL5 production by 20.33?pg/ml and inhibited IL-13 generation by 95.71?pg/ml. In contrast, PI3 kinase inhibitor LY294002 had no effect on 4-MH induced RANTES/CCL5 production but blocked IL-13 generation by 117.58?pg/ml.

Discussion and conclusion: These data demonstrate that the H4R activates divergent signaling pathways to induce cytokine and chemokine production in human mast cells.  相似文献   

17.
Summary— Recent evidence suggests that multiple pathways exist in PMN activation and that specific leukocyte response may be due to the activation of a particular signaling pathway. Using flow cytometry, PMN activation pathways were studied through the parallel comparison of n-formyl-Met-Leu-Phe (fMLP)- and phorbol-12-myristate-13-acetate (PMA)-induced stimulation and by simultaneous assays for CD11b expression and morphology. The maximal CD11b expression was higher with PMA than with fMLP, suggesting different activation pathways. Under these experimental conditions, a morphological response to fMLP was not observed. However, significant shape change was detected in PMA treated samples and was suppressed by either the removal of extracellular calcium or staurosporine at the concentrations above 14.5 μM. Calcium ionophore induced a similar light scattering pattern to that by PMA and enhanced CD11b expression, both of which were not inhibitable by staurosporine. These observations, for the first time, indicated that Ca2+ was a mediator in activation processes and that the treatment of PMN with PMA resulted in Ca2+ influx.  相似文献   

18.
Neutrophils play a key role at inflammatory sites where, in addition to destroying infecting microorganisms, they may also have deleterious effects on host tissues. Both activities involve activation of the NADPH-oxidase that produces bactericidal and tissue-destructive reactive oxygen species (ROS). We activated the murine NADPH-oxidase using different types of neutrophil activators and characterized the oxidative responses with respect to magnitude, localization, and kinetics. We show that agonist-induced activation of murine neutrophils results exclusively in extracellular release of ROS and no intracellular production could be detected. We also show that the formylated peptide, formyl-Met-Leu-Phe (fMLF), is a much less potent activator of the murine NADPH-oxidase than of the human analogue. Nevertheless, fMLF responses can be primed by pretreating the murine neutrophils with either cytochalasin B or bacterial lipopolysaccharide. Finally, we show that a synthetic hexapeptide, WKYMVM, is a more potent stimulus than fMLF for murine neutrophils and that these two agonists probably act via nonidentical high-affinity receptors.  相似文献   

19.
20.
The activities of the related Abl and Arg nonreceptor tyrosine kinases are kept under tight control in cells, but exposure to several different stimuli results in a two- to fivefold stimulation of kinase activity. Following the breakdown of inhibitory intramolecular interactions, Abl activation requires phosphorylation on several tyrosine residues, including a tyrosine in its activation loop. These activating phosphorylations have been proposed to occur either through autophosphorylation by Abl in trans or through phosphorylation of Abl by the Src nonreceptor tyrosine kinase. We show here that these two pathways mediate phosphorylation at distinct sites in Abl and Arg and have additive effects on Abl and Arg kinase activation. Abl and Arg autophosphorylate at several sites outside the activation loop, leading to 5.2- and 6.2-fold increases in kinase activity, respectively. We also find that the Src family kinase Hck phosphorylates the Abl and Arg activation loops, leading to an additional twofold stimulation of kinase activity. The autoactivation pathway may allow Abl family kinases to integrate or amplify cues relayed by Src family kinases from cell surface receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号