首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the WAG/Rij rat, a model for human absence epilepsy, spike‐wave discharges (SWD) and absence epileptic behavior develop after the age of 3 months. The rostral part of the reticular thalamic nucleus (rRTN) is involved in SWD. Ca2+ channels play a central role in the initiation and maintenance of burst firing activity of thalamic cells. We hypothesize that a changed expression of α1‐subunits of one or more high voltage‐activated Ca2+ channel types in the rRTN underlies the development of SWD. To test this hypothesis we compared 3‐ and 6‐month‐old WAG/Rij rats with nonepileptic, age‐matched control rats. By immunocytochemistry, the expressions of α11.3‐, α12.1‐, α12.2‐, and α12.3‐subunits were shown in both strains, demonstrating the presence of Cav1.3, Cav2.1, Cav2.2, and Cav2.3 channels, respectively. Quantification of channel expression indicates that the development of SWD in WAG/Rij rats is concomitant with an increased expression of Cav2.1 channels in the rRTN. These channels are mainly presynaptic, as revealed by double immunofluorescence involving the presynapse marker syntaxin. The mechanism by which this increase could be related to the occurrence of SWD has been discussed. © 2004 Wiley Periodicals, Inc. J Neurobiol 58: 467–478, 2004  相似文献   

2.
The aim of this study was to investigate the ultrastructure of the reticular thalamic nucleus (RTN) in rats of WAG/Rij strain, an established model for human absence epilepsy. Most RTN neurons are medium-to large-sized and have either dark or light appearance, depending on their functional state. Moreover, small-sized neurons with short axons are present, their characteristics being described for the first time.  相似文献   

3.
4.
Low voltage-activated (LVA) Ca2+ conductances were characterized in the neurons of the associative laterodorsal (LD) thalamic nucleus in rat brain slices and in enzymatically isolated thalamic units using electrophysiological techniques. Voltage dependence, kinetics of inactivation, pharmacology, and selectivity of the LVA current in the thalamic neurons from animals older than 14 postnatal days were consistent with the existence of two, “fast” and “slow,” subtypes of LVA Ca2+ channels. “Slow” LVA current in enzymatically isolated thalamic neurons was much less prominent, compared with that in slice neurons, suggesting that respective channels are predominatly located on the distal dendrites. “Fast” Ca2+ channels were sensitive to nifedipine (K d−2.6 μM) and La3+ (K d−1.0 mM), whereas “slow” Ca2+ channels were sensitive to Ni2+ (25 μM). Selectivity of the “fast” Ca2+ channels was similar to that found for the LVA Ca2+ channels in other preparations (I Ca:I Sr:I Ba−1.0: 1.23: 0.94), while selectivity of the “slow” Ca2+ channels more resembled selectivity of the HVA Ca2+ channels (I Ca:I Sr:I Ba−1.0: 2.5: 3.4).  相似文献   

5.
6.
Placebo-treated WAG/Rij rats (as compared to normal Wistar rats without seizure pathology) exhibited depressive-like behavior similar to that of intact rats of the same strain: decreased exploratory activity in the open field test, increased immobility in the forced swimming test, decreased sucrose consumption and preference (anhedonia). Chronic injection of tricyclic antidepressant imipramine (15 mg/kg. i.p., for 15 days) exerted a therapeutic (antidepressant) effect on depressive-like behavior in WAG/Rij rats. After cessation of antidepressant therapy, the behavior of WAG/Rij rats didn't significantly differ from that of Wistar rats. Acute (single) injection of selective D2/D3 dopamine receptor antagonist raclopride (100 microg/kg, i.p., 15 min prior to behavioral testing) aggravated the symptoms of depressive-like behavior and suppressed antidepressant effect of chronic injection of imipramine in WAG/Rij rats, whereas it didn't exert a substantial effect on behavior of Wistar rats. Injection of D2/D3 dopamine receptor agonist Parlodel (bromocriptine) counteracted the depressive-like behavior in WAG/Rij rats and didn't exert substantial influence on behavior of Wistar rats with the exception of a decrease in immobility time in the forced swimming test. Injections of imipramine and raclopride didn't exert significant influences on the level of general locomotor activity and anxiety both in WAG/Rij and Wistar rats. The results demonstrate the dopamine-dependent character of depressive-like behavior in WAG/Rij rats, and indicate possible involvement of dopamine D2-like receptors in mediation of the antidepressant effect of imipramine on genetically determined depressive-like behavior in WAG/Rij rats.  相似文献   

7.
The kinetic and pharmacological properties of low voltage-activated (LVA) Ca2+ channels were studied in neurons of the laterodorsal (LD) thalamic nucleus in brain slices from 12-day-old rats. A homogeneous population of LVA Ca2+ channels was found in the tested neurons. LVA Ca2+ current evoked by a step depolarization from a holding potential more negative than −70 mV was found to be sensitive to nifedipine (K d=2.6 (M). This current gained its maximum at −55 mV and demonstrated fast monoexponential decay with the time constant of 32.3±4.0 msec (n=15). Lanthanum (1 μM) effectively blocked LVA Ca2+ current, while nickel (25 μM) did not affect this current. It is concluded that the channels that, according to their pharmacological properties, provide the studied LVA Ca2+ current cannot be regarded as T-type Ca2+ channels and belong to some other type of LVA Ca2+ channels.  相似文献   

8.
WAG/Rij rats were injected with apomorphine (0.5 mg/kg, i.p.), an agonist of D2 receptors. Two types of spike-wave discharges (generalized and local) were found in the baseline ECoG of the intact and injected rats. Injections of apomorphine led to a suppression of the generalized (type 1) for about 30 minutes and a 8-10-fold increase in the local spike-wave discharges (type 2) within 4-6 minutes. Since it has been shown earlier that haloperidol, which acts on dopamine receptors oppositely to apomorphine, enhance the generalized spike-wave activity and suppress the local discharges. Thus, the different pharmacological characteristics of the two types of spike-wave activity suggest the controlling role of the dopaminergic system in the processes of spike-wave generation.  相似文献   

9.
The role of neuroactive steroids and GABA(A) receptors in the generation of spontaneous spike-and-wave discharges (SWDs) was investigated in the WAG/Rij rat model of absence epilepsy. The plasma, cerebrocortical, and thalamic concentrations of the progesterone metabolite 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-TH PROG) were increased in the WAG/Rij rat at 2 months of age compared with those in control (Wistar) rats. In contrast, the brain and peripheral levels of 3alpha,5alpha-tetrahydrodeoxycorticosterone (3alpha,5alpha-TH DOC) did not differ between the two rat strains at this age. At 6 months of age, when absence epilepsy worsens in WAG/Rij rats, the plasma concentration of 3alpha,5alpha-TH PROG remained high whereas that of 3alpha,5alpha-TH DOC had increased, the cerebrocortical levels of both 3alpha,5alpha-TH PROG and 3alpha,5alpha-TH DOC had increased, and the thalamic concentrations of these metabolites had decreased. At 6 months of age the expression of the alpha(4) and delta subunits of the GABA(A) receptor in relay nuclei was increased. Finally, chronic stress induced by social isolation elicited a reduction in the amount of 3alpha,5alpha-TH PROG in the thalamus of 2-month-old WAG/Rij rats that was associated with a reduction in the number and overall duration of SWDs at 6 months of age. Absence epilepsy in the WAG/Rij rat is thus associated with changes in the abundance of neuroactive steroids and in the expression of specific GABA(A) receptor subunits in the thalamus, a brain area key to the pathophysiology of this condition.  相似文献   

10.
Matrix metalloproteinases (MMPs) are known to be activated in the brain by epileptic seizures and elevated MMP-9 activity has been found in a genetic model of generalized absence epilepsy (Wistar Albino Glaxo Rijswijk/WAG/Rij rats). In this study we posed the question, whether MMP inhibitory dose of doxycycline (20 mg/kg) could affect the spike-wave-discharges (SWDs) of the WAG/Rij rat. We found that intraperitoneal (i.p.) administration of 20 mg/kg doxycycline significantly increased the incidence and duration of SWDs for 4 h. As doxycycline has both MMP inhibitory and anti-inflammatory effects we also tested a lower dose of doxycycline (10 mg/kg, i.p.) and a selective broad-spectrum MMP inhibitor GM6001 (N-[2(R)-2-(hydroxamido carbonylmethyl)-4-methylpentanoyl]-l-tryptophane methylamide) intracerebroventricularly (i.c.v., 10 ng/rat). While 10 mg/kg doxycycline significantly increased the SWD number for 1 h, GM6001 significantly increased the SWD number during the whole 4-h recording period. Our results could indicate that the induction of MMPs in the epileptic brain, besides contributing to structural remodeling, would also be associated with such functions as homeostatic synaptic plasticity which might counteract epileptic seizures.  相似文献   

11.
Progesterone and oestradiol serum level was investigated in WAG/Rij rats with genetically determined absences. Blood samples were drawn before and after the pregnancy following the parturition. The serum concentration of progesterone increased after the 3rd day of pregnancy. There is no increasing of oestradiol during pregnancy as large as this. The progesterone is kept high to the 18th day of pregnancy and drastically decreased before the parturition. Common duration of absences--spontaneous spikewave discharges (SWD), frequency and the duration of every SWD decreased from 3rd to 19th days of pregnancy before the parturition. On the basis of these data and modern investigations, regulation of GABAA receptor expression during pregnancy by progesterone (Brusaartd A. B. et al., 1999) it can be assumed that the changes in the parameters of SWD are possibly correlated with the progesterone changes in serum during pregnancy in WAG/Rij rats.  相似文献   

12.
13.
In rat model of absence epilepsy, abnormal complex movements of cervicothorathic part (jerks) were observed in the state of passive wakefulness. When a desynchronized low-amplitude electrical activity was recorded in the parietal and visual cortex, either SWD or jerks were observed. The SWD appearance prevented a jerk. If the discharge appeared between jerks, the interval between jerks increased. Particularly important is the fact that after subtraction of the discharge duration, the distribution of intervals between jerks became the same as in the absence of the SWD. This finding shows that an SWD just interrupts the development of a jerk. That is, when the discharge is over, the jerk develops from the level at which it was stopped by the discharge rather than from the initial level of excitation.  相似文献   

14.
Pore size is of considerable interest in voltage-gated Ca(2+) channels because they exemplify a fundamental ability of certain ion channels: to display large pore diameter, but also great selectivity for their ion of choice. We determined the pore size of several voltage-dependent Ca(2+) channels of known molecular composition with large organic cations as probes. T-type channels supported by the Ca(V)3.1, Ca(V)3.2, and Ca(V)3.3 subunits; L-type channels encoded by the Ca(V)1.2, beta(1), and alpha(2)delta(1) subunits; and R-type channels encoded by the Ca(V)2.3 and beta(3) subunits were each studied using a Xenopus oocyte expression system. The weak permeabilities to organic cations were resolved by looking at inward tails generated upon repolarization after a large depolarizing pulse. Large inward NH(4)(+) currents and sizable methylammonium and dimethylammonium currents were observed in all of the channels tested, whereas trimethylammonium permeated only through L- and R-type channels, and tetramethylammonium currents were observed only in L-type channels. Thus, our experiments revealed an unexpected heterogeneity in pore size among different Ca(2+) channels, with L-type channels having the largest pore (effective diameter = 6.2 A), T-type channels having the tiniest pore (effective diameter = 5.1 A), and R-type channels having a pore size intermediate between these extremes. These findings ran counter to first-order expectations for these channels based simply on their degree of selectivity among inorganic cations or on the bulkiness of their acidic side chains at the locus of selectivity.  相似文献   

15.
K+-stimulated 45Ca2+ uptake into intact rat brain cells was biphasic, consisting of a fast first phase and a slow second phase; the latter was Na+ dependent. Cobalt and cadmium at 10(-4) and 10(-3) M produced 19-97% block of first phase 45Ca2+ uptake, but nitrendipine (to 10(-6) M) and Bay K 8644 (to 10(-6) M) were without effect on uptake and were similarly without effect in cells prepared in the presence of ATP, cAMP, Mg2+, and protease inhibitors. The second phase of K+-stimulated 45Ca2+ uptake was inhibited by 3,4-dichlorobenzamil (IC50, 29.6 microM). Depolarization-induced 45Ca2+ uptake into intact rat brain cells occurs by at least two different mechanisms. The first phase probably represents uptake through 1,4-dihydropyridine-insensitive Ca2+ channels, while the second phase is probably due to Na+-Ca2+ exchange.  相似文献   

16.
17.
The thalamic reticular nucleus (TRN) projects inhibitory signals to the thalamus, thereby controlling thalamocortical connections. Few studies have examined the development of TRN projections to the anterior thalamic nuclei with regard to axon course and the axon terminal distributions. In the present study, we used parvalbumin (PV) immunostaining to investigate inhibitory projections from the TRN to the thalamus in postnatal (P) 2- to 5-week-old rats (P14–35). The distribution of PV-positive (+) nerve fibers and nerve terminals markedly differed among the anterior thalamic nuclei at P14. Small, beaded nerve terminals were more distributed throughout the anterodorsal nucleus (AD) than in the anteroventral nucleus (AV) and anteromedial nucleus (AM). PV+ fibers traveling from the TRN to the AD were observed in the AV and AM. Nodular nerve terminals, spindle or en passant terminals, were identified on the axons passing through the AV and AM. At P21, axon bundles traveling without nodular terminals were observed, and nerve terminals were distributed throughout the AV and AM similar to the AD. At P28 and P35, the nerve terminals were evenly distributed throughout each nucleus. In addition, DiI tracer injections into the retrosplenial cortex revealed retrogradely-labeled projection neurons in the 3 nuclei at P14. At P14, the AD received abundant projections from the TRN and then projected to the retrosplenial cortex. The AV and AM seem to receive projections with distinct nodular nerve terminals from the TRN and project to the retrosplenial cortex. The projections from TRN to the AV and AM with nodular nerve terminals at P14 are probably developmental-period specific. In comparison, the TRN projections to the AD at P14 might be related to the development of spatial navigation as part of the head orientation system.Key words: Thalamic reticular nucleus, parvalbumin, axon terminal, development, anterior thalamic nucleus, rat  相似文献   

18.
It has been shown for the first time that rearing by a foster Wistar mother with high level of maternal care (MC) counteracts the expression of genetic absence epilepsy (AE) and comorbid depression – reduces the number, duration and index of spike-wave discharges (SWDs) and immobility time in the forced swimming test, as well as exerts substantial effects on morphology and time-frequency dynamics of SWDs in WAG/Rij rats. It is supposed that increases in MC early in development might be used to counteract epileptogenesis and comorbid depression in people genetically predisposed to AE.  相似文献   

19.
Two types of voltage-dependent Ca(2+) channels have been identified in heart: high (I(CaL)) and low (I(CaT)) voltage-activated Ca(2+) channels. In guinea pig ventricular myocytes, low voltage-activated inward current consists of I(CaT) and a tetrodotoxin (TTX)-sensitive I(Ca) component (I(Ca(TTX))). In this study, we reexamined the nature of low-threshold I(Ca) in dog atrium, as well as whether it is affected by Na(+) channel toxins. Ca(2+) currents were recorded using the whole-cell patch clamp technique. In the absence of external Na(+), a transient inward current activated near -50 mV, peaked at -30 mV, and reversed around +40 mV (HP = -90 mV). It was unaffected by 30 microM TTX or micromolar concentrations of external Na(+), but was inhibited by 50 microM Ni(2+) (by approximately 90%) or 5 microM mibefradil (by approximately 50%), consistent with the reported properties of I(CaT). Addition of 30 microM TTX in the presence of Ni(2+) increased the current approximately fourfold (41% of control), and shifted the dose-response curve of Ni(2+) block to the right (IC(50) from 7.6 to 30 microM). Saxitoxin (STX) at 1 microM abolished the current left in 50 microM Ni(2+). In the absence of Ni(2+), STX potently blocked I(CaT) (EC(50) = 185 nM) and modestly reduced I(CaL) (EC(50) = 1.6 microM). While TTX produced no direct effect on I(CaT) elicited by expression of hCa(V)3.1 and hCa(V)3.2 in HEK-293 cells, it significantly attenuated the block of this current by Ni(2+) (IC(50) increased to 550 microM Ni(2+) for Ca(V)3.1 and 15 microM Ni(2+) for Ca(V)3.2); in contrast, 30 microM TTX directly inhibited hCa(V)3.3-induced I(CaT) and the addition of 750 microM Ni(2+) to the TTX-containing medium led to greater block of the current that was not significantly different than that produced by Ni(2+) alone. 1 microM STX directly inhibited Ca(V)3.1-, Ca(V)3.2-, and Ca(V)3.3-mediated I(CaT) but did not enhance the ability of Ni(2+) to block these currents. These findings provide important new implications for our understanding of structure-function relationships of I(CaT) in heart, and further extend the hypothesis of a parallel evolution of Na(+) and Ca(2+) channels from an ancestor with common structural motifs.  相似文献   

20.
To investigate the mechanisms that increase ionic currents when Ca(2+) channels' alpha(1) subunits are co-expressed with the beta-subunits, we compared channel activity of Ca(V)1.2 (alpha(1C)) co-expressed with beta(1a) and beta(2a) in Xenopus oocytes. Normalized by charge movement, ionic currents were near threefold larger with beta(2a) than with beta(1a). At the single-channel level, the open probability (P(o)) was over threefold larger with beta(2a), and traces with high P(o) were more frequent. Among traces with P(o) > 0.1, the mean duration of burst of openings (MBD) were nearly twice as long for alpha(1C)beta(2a) (15.1 +/- 0.7 ms) than for alpha(1C)beta(1a) (8.4 +/- 0.5 ms). Contribution of endogenous beta(3xo) was ruled out by comparing MBDs with alpha(1C)-cRNA alone (4.7 +/- 0.1 ms) with beta(3xo) (14.3 +/- 1.1 ms), and with beta(1b) (8.2 +/- 0.5 ms). Open-channel current amplitude distributions were indistinguishable for alpha(1C)beta(1a) and alpha(1C)beta(2a), indicating that opening and closing kinetics are similar with both subunits. Simulations with constant opening and closing rates reproduced the microscopic kinetics accurately, and therefore we conclude that the conformational change-limiting MBD is differentially regulated by the beta-subunits and contributes to the larger ionic currents associated with beta(2a), whereas closing and opening rates do not change, which should reflect the activity of a separate gate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号