首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis-inducing agents have been reported to cause rapid shedding of tumor necrosis factor receptor 1 (TNFR1) in endothelial cells (EC). Oxidized LDL (oxLDL) has also been known to induce apoptosis of EC and to inhibit proliferation of EC. In the present study, we show that oxLDL also causes shedding of TNFR1 in EC and that EC transfected with soluble TNFR1 (sTNFR1 ), which is an extracellular domain of TNFR1, can antagonize the toxicity induced by oxLDL. These results suggest that transfection with the sTNFR1 gene plays a protective role against the injury of EC induced by oxLDL. We speculate therefore that sTNFR1 can be a new strategy for treatment of atherogenesis possibly by preventing shedding of TNFR1.  相似文献   

2.
3.
4.
5.
6.
Fatty acids have been postulated to regulate adaptation of adipose mass to nutritional changes by controlling expression of genes implicated in lipid metabolism via activation of nuclear receptors. Ectopic expression of the nuclear receptors PPARgamma or PPARdelta promotes adipogenesis in fibroblastic cells exposed to thiazolidinediones or long-chain fatty acids. To investigate the role of PPARdelta in fatty acid regulation of gene expression and adipogenesis in a preadipose cellular context, we studied the effects of overexpressing the native receptor or the dominant-negative PPARdelta mutant in Ob1771 and 3T3-F442A cells. Overexpression of PPARdelta enhanced fatty acid induction of the adipose-related genes for fatty acid translocase, adipocyte lipid binding protein, and PPARgamma and fatty acid effects on terminal differentiation. A transactivation-deficient form of PPARdelta mutated in the AF2 domain severely reduced these effects. Findings are similar in Ob1771 or 3T3-F442A preadipose cells. These data demonstrate that PPARdelta plays a central role in fatty acid-controlled differentiation of preadipose cells. Furthermore, they suggest that modulation of PPARdelta expression or activity could affect adaptive responses of white adipose tissue to nutritional changes.  相似文献   

7.
8.
9.
Osteoclasts modulate bone resorption under physiological and pathological conditions. Previously, we showed that both estrogens and retinoids regulated osteoclastic bone resorption and postulated that such regulation was directly mediated through their cognate receptors expressed in mature osteoclasts. In this study, we searched for expression of other members of the nuclear hormone receptor superfamily in osteoclasts. Using the low stringency homologous hybridization method, we isolated the peroxisome proliferator-activated receptor delta/beta (PPARdelta/beta) cDNA from mature rabbit osteoclasts. Northern blot analysis showed that PPARdelta/beta mRNA was highly expressed in highly enriched rabbit osteoclasts. Carbaprostacyclin, a prostacyclin analogue known to be a ligand for PPARdelta/beta, significantly induced both bone-resorbing activities of isolated mature rabbit osteoclasts and mRNA expression of the cathepsin K, carbonic anhydrase type II, and tartrate-resistant acid phosphatase genes in these cells. Moreover, the carbaprostacyclin-induced bone resorption was completely blocked by an antisense phosphothiorate oligodeoxynucleotide of PPARdelta/beta but not by the sense phosphothiorate oligodeoxynucleotide of the same DNA sequence. Our results suggest that PPARdelta/beta may be involved in direct modulation of osteoclastic bone resorption.  相似文献   

10.
Dendritic cells (DC) are the most potent APCs known that play a key role for the initiation of immune responses. Ag presentation to T lymphocytes is likely a constitutive function of DC that continues during the steady state. This raises the question of which mechanism(s) determines whether the final outcome of Ag presentation will be induction of immunity or of tolerance. In this regard, the mechanisms controlling DC immunogenicity still remain largely uncharacterized. In this paper we report that the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-gamma), which has anti-inflammatory properties, redirects DC toward a less stimulatory mode. We show that activation of PPAR-gamma during DC differentiation profoundly affects the expression of costimulatory molecules and of the DC hallmarker CD1a. PPAR-gamma activation in DC resulted in a reduced capacity to activate lymphocyte proliferation and to prime Ag-specific CTL responses. This effect might depend on the decreased expression of costimulatory molecules and on the impaired cytokine secretion, but not on increased IL-10 production, because this was reduced by PPAR-gamma activators. Moreover, activation of PPAR-gamma in DC inhibited the expression of EBI1 ligand chemokine and CCR7, both playing a pivotal role for DC migration to the lymph nodes. These effects were accompanied by down-regulation of LPS-induced nuclear localized RelB protein, which was shown to be important for DC differentiation and function. Our results suggest a novel regulatory pathway for DC function that could contribute to the regulated balance between immunity induction and self-tolerance maintenance.  相似文献   

11.
12.
Liver regeneration (LR) is of great clinical significance in various liver-associated diseases. LR proceeds along a sequence of three distinct phases: priming/initiation, proliferation, and termination. Compared with the recognition of the first two phases, little is known about LR termination and structure/function reorganization. A combination of "omics" techniques, along with bioinformatics, may provide new insights into the molecular mechanism of the late-phase LR. Gene, protein, and metabolite profiles of the rat liver were determined by cDNA microarray, two-dimensional electrophoresis, and HPLC-MS analysis. Pathway enrichment analysis was performed to identify the pathways: 427 differentially expressed genes extracted from the microarray experiment revealed two expression patterns representing the early and late phase of LR. Functionally, the genes expressing at a higher level at the early phase than at the late phase were mainly involved in the response to stress, proliferation, and resistance to apoptosis, while those expressing at a lower level at the early phase than at the late phase were mainly engaged in lipid metabolism. Compared with the sham-operation control (SH) group, 5 proteins in the 70% partial hepatectomy (70%PHx) group were upregulated at the protein level, and 3 proteins were downregulated at 168 h after the 70%PHx. E-FABP, an upregulated fatty acid binding protein, was found to be involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. The metabolomic data confirmed the enhancement of lipid metabolism by the detection of the intermediate and final metabolites. We've concluded that increased lipid metabolism and activated PPAR signaling pathways play important roles in late-phase LR.  相似文献   

13.
14.
The PEX11 peroxisomal membrane proteins promote peroxisome division in multiple eukaryotes. As part of our effort to understand the molecular and physiological functions of PEX11 proteins, we disrupted the mouse PEX11alpha gene. Overexpression of PEX11alpha is sufficient to promote peroxisome division, and a class of chemicals known as peroxisome proliferating agents (PPAs) induce the expression of PEX11alpha and promote peroxisome division. These observations led to the hypothesis that PPAs induce peroxisome abundance by enhancing PEX11alpha expression. The phenotypes of PEX11alpha(-/-) mice indicate that this hypothesis remains valid for a novel class of PPAs that act independently of peroxisome proliferator-activated receptor alpha (PPARalpha) but is not valid for the classical PPAs that act as activators of PPARalpha. Furthermore, we find that PEX11alpha(-/-) mice have normal peroxisome abundance and that cells lacking both PEX11alpha and PEX11beta, a second mammalian PEX11 gene, have no greater defect in peroxisome abundance than do cells lacking only PEX11beta. Finally, we report the identification of a third mammalian PEX11 gene, PEX11gamma, and show that it too encodes a peroxisomal protein.  相似文献   

15.
16.
17.
Recent literature has suggested the benefit of selective PPARdelta agonists for the treatment of atherosclerosis and other disease states associated with the metabolic syndrome. Herein we report the synthesis and structure-activity relationships of a series of novel and selective PPARdelta agonists. Our search began with identification of a novel benzothiophene template which was modified by the addition of various thiazolyl, isoxazolyl, and benzyloxy-benzyl moieties. Further elucidation of the SAR led to the identification of benzofuran and indole based templates. During the course of our research, we discovered three new chemical templates with varying degrees of affinity and potency for PPARdelta versus the PPARalpha and PPARgamma subtypes.  相似文献   

18.
19.
Peroxisome proliferator-activated receptors (PPARs) play an important role in different compartments of the female reproductive system in rodents and humans. However, expressional profiles and physiological functions of PPARs in the endometrium prior to the placentation are not well understood. In this study, we determined expressional profiles of the PPARs during early pregnancy. Immunocytochemistry revealed that both PPARα and PPARβ/δ were strongly detected in the endometrial stroma on days 4.5–6.5 of pregnancy, which is just a starting time of implantation. Delayed implantation animal model showed that the expressions of PPARα and PPARβ/δ occurred after the initiation of implantation in the endometrial stroma. Moreover, an in vitro decidualization model further revealed that the expression of PPARα increased in the cultured rat endometrial stromal cells at 24 h after the decidualization treatment, but the expression of PPARβ/δ was delayed and increased at 48 h after the treatment. PPARγ was expressed in the endometrial stroma and its expression decreased significantly at 2.5 days post-coitum and maintained a low level of expression during the period of implantation. These results indicate that PPARα is expressed and induced by the initiation of implantation, prior to the expression of PPARβ/δ in decidualized endometrium. Increasing expression of PPARγ during fertilization and its decline during the period of implantation further suggest that PPARs may play important roles during early pregnancy.  相似文献   

20.
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors primarily involved in lipid homeostasis. PPARdelta displays strong expression in tissues with high lipid metabolism, such as adipose, intestine and muscle. Its role in skeletal muscle remains largely unknown. After a 24-h starvation period, PPARdelta mRNA levels are dramatically up-regulated in gastrocnemius muscle of mice and restored to control level upon refeeding. The rise of PPARdelta is accompanied by parallel up-regulations of fatty acid translocase/CD36 (FAT/CD36) and heart fatty acid binding protein (H-FABP), while refeeding promotes down-regulation of both genes. To directly access the role of PPARdelta in muscle cells, we forced its expression and that of a dominant-negative PPARdelta mutant in C2C12 myogenic cells. Differentiated C2C12 cells responds to 2-bromopalmitate or synthetic PPARdelta agonist by induction of genes involved in lipid metabolism and increment of fatty acid oxidation. Overexpression of PPARdelta enhanced these cellular responses, whereas expression of the dominant-negative mutant exerts opposite effects. These data strongly support a role for PPARdelta in the regulation of fatty acid oxidation in skeletal muscle and in adaptive response of this tissue to lipid catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号