首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
DNA damage induced with ionizing radiation is considered one of the main causes of cell inactivation. Several methods including gel electrophoresis, pulsed-field gel electrophoresis, neutral filter elution method, neutral sedimentation and electron microscopy have been applied to analyze this type of DNA damage. A new method employing an atomic force microscope (AFM) for nanometer-level-structure analysis of DNA damage induced with gamma-irradiation is introduced in this report. Structural changes of plasmid DNA on a molecular size scale of about 3 kbp were visually analyzed by AFM after irradiation with 60Co gamma-rays at doses of 1.9, 5.6, and 8.3 kGy. Three forms of plasmid DNA, closed circular (intact DNA), open circular (DNA with a single strand break) and linear form (DNA with a double strand break) were visualized by dynamic force mode AFM after gamma-irradiation. The torsional feature of the plasmid DNA was visualized better with AFM than with a transmission electron microscope (TEM). All three forms of plasmid DNA were observed in the sample irradiated with gamma-rays at the dose of 1.9 kGy. Open circular and linear forms were observed in the samples irradiated with gamma-rays at doses of 5.6 and 8.3 kGy, though no closed circular form was observed. A shortening of the length of a linear form of DNA irradiated with 5.6 and 8.3 kGy gamma-rays was observed by AFM. Structural changes of DNA after gamma-irradiation were visualized by AFM at nanometer level resolution. In addition, shortening of the length of the linear form of DNA after radiation exposure was observed by AFM.  相似文献   

2.
We report detection and quantification of ultraviolet (UV) damage in DNA at a single molecule level by atomic force microscopy (AFM). By combining the supercoiled plasmid relaxation assay with AFM imaging, we find that high doses of medium wave ultraviolet (UVB) and short wave ultraviolet (UVC) light not only produce cyclobutane pyrimidine dimers (CPDs) as reported but also cause significant DNA degradation. Specifically, 12.5 kJ/m(2) of UVC and 165 kJ/m(2) of UVB directly relax 95% and 78% of pUC18 supercoiled plasmids, respectively. We also use a novel combination of the supercoiled plasmid assay with T4 Endonuclease V treatment of irradiated plasmids and AFM imaging of their relaxation to detect damage caused by low UVB doses, which on average produced approximately 0.5 CPD per single plasmid. We find that at very low UVB doses, the relationship between the number of CPDs and UVB dose is almost linear, with 4.4 CPDs produced per Mbp per J/m(2) of UVB radiation. We verified these AFM results by agarose gel electrophoresis separation of UV-irradiated and T4 Endonuclease V treated plasmids. Our AFM and gel electrophoresis results are consistent with the previous result obtained using other traditional DNA damage detection methods. We also show that damage detection assay sensitivity increases with plasmid size. In addition, we used photolyase to mark the sites of UV lesions in supercoiled plasmids for detection and quantification by AFM, and these results were found to be consistent with the results obtained by the plasmid relaxation assay. Our results suggest that AFM can supplement traditional methods for high resolution measurements of UV damage to DNA.  相似文献   

3.
Water-soluble non-conjugated thienyl tetraynes (3-6) were synthesized and their DNA cleaving activity was evaluated using electrophoresis, atomic force microscopy (AFM) and Escherichia coli (E. coli) transformation techniques. The amino-functionalized compound 4 was shown to possess an activity to cleave plasmid DNA by both electrophoresis and E. coli transformation techniques. AFM also showed a cleavage of the circular DNA into a linear form with a formation of burst-star-shaped architectures, which were envisaged to be cross-linked DNA oligomers.  相似文献   

4.
A new stable substrate applicable to the observation of DNA molecules by atomic force microscopy (AFM) was fabricated from a ultrasmooth sapphire (alpha-Al2O3 single crystal) plate. The atomically ultrasmooth sapphire as obtained by high-temperature annealing has hydrophobic surfaces and could not be used for the AFM observation of DNA. However, sapphire treated with Na3PO4 aqueous solution exhibited a hydrophilic character while maintaining a smooth surface structure. The surface of the wet-treated sapphire was found by x-ray photoelectron spectroscopy and AFM to be approximately 0.3 nm. The hydrophilic surface character of the ultrasmooth sapphire plate made it easy for DNA molecules to adhere to the plate. Circular molecules of the plasmid DNA could be imaged by AFM on the hydrophilic ultrasmooth sapphire plate.  相似文献   

5.
激光作用质粒DNA和小牛胸腺DNA的AFM研究   总被引:3,自引:0,他引:3  
激光作用质粒DNA和小牛胸腺DNA产生损伤效应,导致DNA结构变化,利用一种改进的试样制备过程和纳米显微镜--原子力显微镜(AFM)能够获得可重现的激光作用质粒DNA和小牛胸腺DNA的AFM图象,显示它们的特殊的表面结构。  相似文献   

6.
A method to increase the bioactivity of plasmid DNA by heat treatment has been developed. The structure of the heat treated plasmid DNA was investigated by electrophoresis assay and atomic force microscope (AFM) observation. Electrophoresis assay showed that the heat treated DNA consisted of three components: the supercoiled DNA (component I), the open circular DNA (component II) and the heat denatured DNA component. The bioactivity of the heat treated plasmid DNA was investigated by both DNA condensation experiments and gene transfection experiment with mammal cells. DNA condensation experiments showed that the heat denatured DNA component owned higher sensitivity to spermidine and polyethylenimine (PEI) than component I and component II DNA. Gene transfection experiment with PEI indicated that the heat treated DNA had higher gene transfection efficiency than untreated DNA. Our experiment not only shows an effective approach to increase the bioactivity of plasmid DNA but also leads a way to improve the bioactivity of DNA by physically modifying their structure.  相似文献   

7.
Atomic force microscopy (AFM) has been used to image a 471-bp bent DNA restriction fragment derived from the M13 origin of replication in plasmid LITMUS 28, and a 476-bp normal, unbent fragment from plasmid pUC19. The most probable angle of curvature of the 471-bp DNA fragment is 40-50 degrees, in reasonably good agreement with the bend angle determined by transient electric birefringence, 38 degrees +/- 7 degrees. The normal 476-bp DNA fragment exhibited a Gaussian distribution of bend angles centered at 0 degrees, indicating that this fragment does not contain an intrinsic bend. The persistence length, P, was estimated to be 60 +/- 8 and 62 +/- 8 nm for the 471- and 476-bp fragments, respectively, from the observed mean-square end-to-end distances in the AFM images. Since the P-values of the normal and bent fragments are close to each other, the overall flexibility of DNA fragments of this size is only marginally affected by the presence of a stable bend. The close agreement of AFM and transient electric birefringence results validates the suitability of both methods for characterizing DNA bending and flexibility.  相似文献   

8.
RecA-double stranded (ds) DNA complexes have been studied by atomic force microscopy (AFM). When the complexes were prepared in the presence of ATP gamma S, fully covered RecA-dsDNA filaments were observed by AFM. When the concentration of RecA proteins was lower, various lengths of filaments were found. The variation of the observed structures may directly reflect the real distribution of the intermediate complexes in the reaction mixture, as the mixture was simply deposited on a mica surface for AFM observation without special fixation or staining. The use of a carbon nanotube (CNT) AFM tip enabled high resolution to reveal the periodicity of RecA-dsDNA filaments. Our observations demonstrated the potential of the AFM method for the structural studies of the RecA-dsDNA complexes, especially their intermediate states.  相似文献   

9.
Aerosol delivery of plasmid DNA therapeutic solutions is promising for the treatment of respiratory diseases. However, it poses challenges, most significantly the need to protect the delicate supercoiled (sc) structure of plasmid during aerosolization. Nebulizers for liquid aerosolization using meshes appear a better method for delivery than conventional jet and ultrasonic nebulizers. This paper explores their application to the delivery of plasmid DNA. A computational fluid dynamics model of the dynamics of fluid flow through the nozzle of the MicroAIR mesh nebulizer indicated high strain rates (>10(5) s(-1)) near the nozzle exit capable of causing damage to the shear-sensitive plasmid DNA. Knowledge of the strain rates predicted using CFD and molecule size determined using atomic force microscopy (AFM) enabled estimation of the hydrodynamic force and whether damage of shear-sensitive therapeutics was likely. Plasmids of size 5.7 and 20 kb were aerosolized in the mesh nebulizer. The sc structure of the 5.7-kb plasmid was successfully delivered without damage, while aerosolization of the 20-kb plasmid led to disintegration of the pDNA sc structure as observed in AFM. Subsequent formulation of the sc 20-kb plasmid with PEI resulted in successful aerosol delivery. The maximum hydrodynamic forces computed for the aerosolization of structures of the size of 5.7-kb and PEI formulated 20-kb plasmids were less than the forces reported to damage the structure of double-stranded DNA. A combination of CFD analysis and structure analysis may be used to predict successful aerosol delivery in such a mesh nebulizer.  相似文献   

10.
奥沙利铂被称为第三代铂类药物,特别对胃肠道肿瘤具有较好的疗效.目前大多数的研究表明奥沙利铂的主要作用靶点是DNA分子,但它与DNA分子形成的关键结构和作用机制仍处在探索阶段.本研究运用紫外可见吸收光谱和原子力显微镜观察探索奥沙利铂与DNA在活体外的相互作用过程,从而揭示奥沙利铂产生抗癌作用的主要分子结构基础.首先使用紫外光谱研究了较高浓度奥沙利铂与DNA的作用过程.在此基础上,进一步采用原子力显微镜在高定向热解石墨表面观察了不同浓度奥沙利铂与质粒DNA在37℃条件下作用不同时间后的结构形貌变化,分析了奥沙利铂与DNA相互作用的过程.高分辨原子力显微观察结果表明奥沙利铂与DNA作用后可导致质粒DNA的结构发生显著的变化.随着作用时间的增加,DNA分子逐渐由伸展的链状变化为相互缠绕并带有许多结点的紧密结构,最终变化为更紧密的球状结构.本研究结果表明奥沙利铂可通过化学键合作用和静电作用使质粒DNA逐渐凝集为紧密的球状结构,这种结构可能对奥沙利铂的抗癌活性和毒性产生重要影响.  相似文献   

11.
A natural polysaccharide schizophyllan (SPG) has been known to form a stable complex with poly(dA). We attached a poly(dA)(80) tail to the both ends of a linear double-stranded DNA, which had been prepared from a plasmid DNA vector. The poly(dA) tailed DNA verified to form complex with SPG by gel electrophoresis and atomic force microscopy (AFM). AFM images indicated that the complexes exhibit a dumbbell-like architecture, that is, quite similar to that of adenovirus genome. The complex demonstrated excellent exonuclease resistance, probably because of the protection effect by SPG complexation.  相似文献   

12.
Atomic force microscopy (AFM) has been used to examine perturbations in the tertiary structure of DNA induced by the binding of ditercalinium, a DNA bis-intercalator with strong anti-tumour properties. We report AFM images of plasmid DNA of both circular and linearised forms showing a difference in the formation of supercoils and plectonemic coils caused at least in part by alterations in the superhelical stress upon bis-intercalation. A further investigation of the effects of drug binding performed with 292 bp mixed-sequence DNA fragments, and using increment in contour length as a reliable measure of intercalation, revealed saturation occurring at a point where sufficient drug was present to interact with every other available binding site. Moment analysis based on the distribution of angles between segments along single DNA molecules showed that at this level of bis-intercalation, the apparent persistence length of the molecules was 91.7 ± 5.7 nm, approximately twice as long as that of naked DNA. We conclude that images of single molecules generated using AFM provide a valuable supplement to solution-based techniques for evaluation of physical properties of biological macromolecules.  相似文献   

13.
An efficient method was developed to stretch DNA molecules on an atomically flat surface for AFM imaging. This method involves anchoring DNA molecules from their 5' ends to amino silanized mica surfaces. N-Succinimidyl6-[3'-(2-pyridyldithio) propionamido]hexanoate (LC-SPDP), a heterobifunctional cross-linker with a flexible spacer arm was used for this purpose. Immobilization was carried out by introducing a thiol group to the 5' end of DNA by PCR. Thiolated molecules were then reacted with the cross linker to conjugate with its 2-pyridyl disulphide group via sulfhydryl exchange. The resulting complex was deposited on amino silanized mica where NHS-ester moiety of the cross linker reacted with the primary amino group on the surface. Samples were washed by a current of water and dried by an air jet in one direction parallel to the surface. DNA molecules were fully stretched in one direction on imaging them by AFM.  相似文献   

14.
We have used atomic force microscopy (AFM) to study the conformation of three-way DNA junctions, intermediates of DNA replication and recombination. Immobile three-way junctions with one hairpin arm (50, 27, 18 and 7 bp long) and two relatively long linear arms were obtained by annealing two partially homologous restriction fragments. Fragments containing inverted repeats of specific length formed hairpins after denaturation. Three-way junctions were obtained by annealing one strand of a fragment from a parental plasmid with one strand of an inverted repeat-containing fragment, purified from gels, and examined by AFM. The molecules are clearly seen as three-armed molecules with one short arm and two flexible long arms. The AFM analysis revealed two important features of three-way DNA junctions. First, three-way junctions are very dynamic structures. This conclusion is supported by a high variability of the inter-arm angle detected on dried samples. The mobility of the junctions was observed directly by imaging the samples in liquid (AFM in situ). Second, measurements of the angle between the arms led to the conclusion that three-way junctions are not flat, but rather pyramid-like. Non-flatness of the junction should be taken into account in analysis of the AFM data.  相似文献   

15.
Plasmid pBR322 DNA (0.5mg/mL) isolated from Escherichia coli HB101 was suspended in Tris-HCl-EDTA (1 mol/L - 0.1 mol/L, pH8.5); then a drop of the above solution was deposited on freshly cleaved mica substrate. After adsorption for about 1 min, the sample was stained with phosphotungstic acid. The residua] solution was removed with a piece of filter paper. Afterwards the sample was imaged with a home-made atomic force microscope (AFM) in air. The AFM images of pBR322 DNA with a molecular resolution have been obtained. These images show that pBR322 DNA exists in several different topological structures: (i) relaxed circular DNA with a different diameter; (ii) supercondensed DNA with different particle sizes; (iii) dimeric catenane connected by one relaxed circular molecule and another dose-compacted molecule which might be either supercoiled or intramolecular knotted form; (iv) oligomeric catenane with multiple irregular molecules in which DNA is interlocked into a complex oligomer; (v) possibly-existing  相似文献   

16.
The connector of bacteriophage φ29 is involved in DNA packaging during viral morphogenesis and we have studied itsin vitrobinding to DNA using either linear or circular DNA. The protein–DNA complexes have been analyzed by transmission electron microscopy (TEM) and by atomic force microscopy (AFM) of samples directly deposited on mica. TEM showed the presence of a specific binding due to the interaction of the protein with the free ends of the DNA. The study of these samples by AFM showed two major types of morphologies: The interaction of the connector with circular DNA revealed that the strands of DNA that enter and exit the protein complex form an angle with a mean value of 132°. Nevertheless, when the connector was incubated with linear DNA (and later circularized), there was an additional bend angle of about 168°. Further morphological analysis of the latter samples by AFM revealed a structure of the protein–DNA complex consistent with the DNA traversing the connector, probably through the inner channel. On the other hand, images from the samples obtained by incubation of the connector with circular DNA were consistent with an interaction of the DNA with the outer side of the connector.  相似文献   

17.
Atomic force microscopy (AFM) has been used to directly visualize, size and compare the DNA fragments resulting from exposure to low- and high-LET radiation. Double-stranded pUC-19 plasmid ("naked") DNA samples were irradiated by electron-beam or reactor neutron fluxes with doses ranging from 0.9 to 10 kGy. AFM scanning in the tapping mode was used to image and measure the DNA fragment lengths (ranging from a few bp up to 2864 bp long). Double-strand break (DSB) distributions resulting from high-LET neutron and lower-LET electron irradiation revealed a distinct difference between the effects of these two types of radiation: Low-LET radiation-induced DSBs are distributed more uniformly along the DNA, whereas a much larger proportion of neutron-induced DSBs are distributed locally and densely. Furthermore, comparisons with predictions of a random DSB model of radiation damage show that neutron-induced DSBs deviate more from the model than do electron-induced DSBs. In summary, our high-resolution AFM measurements of radiation-induced DNA fragment-length distributions reveal an increased number of very short fragments and hence clustering of DSBs induced by the high-LET neutron radiation compared with low-LET electron radiation and a random DSB model prediction.  相似文献   

18.
19.
Atomic force microscopy (AFM) was applied to study the RecA protein and its complexes with DNA in air and in aqueous solution. RecA and DNA were reacted under several conditions, and deposited onto a mica substrate pre-treated in various ways. We found that the structure of the RecA and RecA-DNA complexes, especially the height of the molecules, was affected by the sample preparation method such as gel filtration, and environment during imaging.  相似文献   

20.
H-NS mediated compaction of DNA visualised by atomic force microscopy   总被引:15,自引:3,他引:12       下载免费PDF全文
The Escherichia coli H-NS protein is a nucleoid-associated protein involved in gene regulation and DNA compaction. To get more insight into the mechanism of DNA compaction we applied atomic force microscopy (AFM) to study the structure of H-NS–DNA complexes. On circular DNA molecules two different levels of H-NS induced condensation were observed. H-NS induced lateral condensation of large regions of the plasmid. In addition, large globular structures were identified that incorporated a considerable amount of DNA. The formation of these globular structures appeared not to be dependent on any specific sequence. On the basis of the AFM images, a model for global condensation of the chromosomal DNA by H-NS is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号