首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Proteins binding to the PEA3 enhancer motif (AGGAAG) activate the polyomavirus early promoter and help comprise the viral late mRNA initiator element (W. Yoo, M. E. Martin, and W. R. Folk, J. Virol. 65:5391-5400, 1991). Because many developmentally regulated cellular genes have PEA3 motifs near their promoter sequences, and because Ets family gene products activate the PEA3 motif, we have studied the expression of PEA3-binding proteins and Ets-related proteins during differentiation of F9 embryonal carcinoma cells. An approximately 91-kDa protein (PEA3-91) was identified in F9 cell nuclear extracts by UV cross-linking to a radiolabeled PEA3 oligonucleotide probe, and expression of PEA3-91 was down-regulated after differentiation of F9 cells to parietal endoderm. The c-ets-1 gene product binds to a sequence in the murine sarcoma virus long terminal repeat that is similar to the PEA3 motif (cGGAAG), but PEA3-91 was not cross-linked to this Ets-1-binding motif, nor did antiserum which recognizes murine c-ets-1 and c-ets-2 proteins have any effect on PEA3-binding activity in mobility shift assays. Furthermore, c-ets-1 mRNA was not detected in undifferentiated or differentiated F9 cells, and c-ets-2 mRNA levels remained high after differentiation. Antiserum against the Drosophila Ets-related E74A protein, however, recognized an approximately 92-kDa protein in F9 cells whose expression during differentiation varied in a manner identical to that of PEA3-91. These data suggest that PEA3-91 is not the product of the ets-1 or ets-2 genes but is likely to be the product of a murine homolog of the Drosophila E74 gene.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
We have previously identified a protein factor, PEBP2 (polyomavirus enhancer-binding protein), in the nuclear extract from mouse NIH 3T3 cells which binds to the sequence motif, PEA2, located within the polyomavirus enhancer A element. Upon cellular transformation with activated oncogene c-Ha-ras, this factor frequently undergoes drastic molecular modifications into an altered form having a considerably reduced molecular size. In this study, the altered form, PEBP3, was purified to near homogeneity. The purified PEBP3 comprised two sets of families of polypeptides, alpha-1 to alpha-4 and beta-1 to beta-2, which were 30 to 35 kilodaltons and 20 to 25 kilodaltons in size, respectively. Both kinds of polypeptides possessed DNA-binding activities with exactly the same sequence specificity. Individual alpha or beta polypeptides complexed with DNA showed faster gel mobilities than did PEBP3. However, the original gel retardation pattern was restored when alpha and beta polypeptides were mixed together in any arbitrary pair. These observation along with the results of UV- and chemical-cross-linking studies led us to conclude that PEBP3 is a heterodimer of alpha and beta subunits, potentially having a divalent DNA-binding activity. Furthermore, PEBP3 was found to bind a second, hitherto-unnoticed site of the polyomavirus enhancer that is located within the B element and coincides with the sequence previously known as the simian virus 40 enhancer core homology. From comparison of this and the original binding sites, the consensus sequence for PEBP3 was defined to be PuACCPuCA. These findings provided new insights into the biological significance of PEBP3 and PEBP2.  相似文献   

13.
The use of phenethyl alcohol (PEA) as a probe for signal sequence-dependent protein translocation in minicells was examined. Processing of beta-lactamases and tonA was inhibited by PEA at concentrations which did not affect production of the alpha and gamma forms of penicillin binding protein (PBP) lb. The PBPlbs are believed to lack leader sequences whereas the other proteins contain them. Processing of a beta-lactamase which shares the murein-lipoprotein export pathway was relatively resistant to PEA, consistent with previous findings in whole bacteria. The results reported here suggest that PEA is a suitable probe for leader sequences in the minicell system. By using PEA we predict that PBP4 does not require a leader sequence for membrane insertion.  相似文献   

14.
15.
16.
The role of ribosomal protein S1 in the translation of mRNA containing an extended Shine-Dalgarno sequence was investigated. Using the toeprinting technique, formation of the ternary initiation complex between 30S subunits, both S1-depleted or treated with anti-S1 antibodies, and mini-mRNA containing the 9 nucleotide-long Shine-Dalgarno sequence was studied. It was concluded that the initiation of translation on mRNA with an extended Shine-Dalgarno sequence is S1-independent. It was demonstrated that S1-depleted ribosomes effectively translate the cro-mini-mRNA in a cell-free system. In contrast to cro-mini-mRNA, 30S subunits without protein S1 are inactive in ternary initiation complex formation with, and cell-free translation of, MS2 or fr phage RNAs and RNA protein III of phage fd.  相似文献   

17.
18.
The replication initiator protein of bacteriophage f1 (gene II protein) binds to the phage origin and forms two complexes that are separable by polyacrylamide gel electrophoresis. Complex I is formed at low gene II protein concentrations, and shows protection from DNase I of about 25 base-pairs (from position +2 to +28 relative to the nicking site) at the center of the minimal origin sequence. Complex II is produced at higher concentrations of the protein, and has about 40 base-pairs (from -7 to +33) protected. On the basis of gel mobility, complex II appears to contain twice the amount of gene II protein as does complex I. The 40 base-pair sequence protected in complex II corresponds to the minimal origin sequence as determined by in-vivo analyses. The central 15 base-pair sequence (from +6 to +20) of the minimal origin consists of two repeats in inverted orientation. This sequence, when cloned into a plasmid, can form complex I, but not complex II. We call this 15 base-pair element the core binding sequence for gene II protein. Methylation interference with the formation of complex I by the wild-type origin indicates that gene II protein contacts six guanine residues located in a symmetric configuration within the core binding sequence. Formation of complex II requires, in addition to the core binding sequence, the adjacent ten base-pair sequence on the right containing a third homologous repeat. A methylation interference experiment performed on complex II indicates that gene II protein interacts homologously with the three repeats. In complex II, gene II protein protects from DNase I digestion not only ten base-pairs on the right but also ten base-pairs on the left of the sequence that is protected in complex I. Footprint analyses of various deletion mutants indicate that the left-most ten base-pairs are protected regardless of their sequence. The site of nicking by gene II protein is located within this region. A model is presented for the binding reaction involving both protein-DNA and protein-protein interactions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号