首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The prostanoid receptors on human airway smooth muscle cells (HASMC) that augment the release by IL-1beta of granulocyte colony-stimulating factor (G-CSF) have been characterized and the signaling pathway elucidated. PCR of HASM cDNA identified products corresponding to EP(2), EP(3), and EP(4) receptor subtypes. These findings were corroborated at the protein level by immunocytochemistry. IL-1beta promoted the elaboration of G-CSF, which was augmented by PGE(2). Cicaprost (IP receptor agonist) was approximately equiactive with PGE(2), whereas PGD(2), PGF(2alpha), and U-46619 (TP receptor agonist) were over 10-fold less potent. Neither SQ 29,548 nor BW A868C (TP and DP(1) receptor antagonists, respectively) attenuated the enhancement of G-CSF release evoking any of the prostanoids studied. With respect to PGE(2), the EP receptor agonists 16,16-dimethyl PGE(2) (nonselective), misoprostol (EP(2)/EP(3) selective), 17-phenyl-omega-trinor PGE(2) (EP(1) selective), ONO-AE1-259, and butaprost (both EP(2) selective) were full agonists at enhancing G-CSF release. AH 6809 (10 microM) and L-161,982 (2 microM), which can be used in HASMC as selective EP(2) and EP(4) receptor antagonists, respectively, failed to displace to the right the PGE(2) concentration-response curve that described the augmented G-CSF release. In contrast, AH 6809 and L-161,982 in combination competitively antagonized PGE(2)-induced G-CSF release. Augmentation of G-CSF release by PGE(2) was mimicked by 8-BrcAMP and abolished in cells infected with an adenovirus vector encoding an inhibitor protein of cAMP-dependent protein kinase (PKA). These data demonstrate that PGE(2) facilitates G-CSF secretion from HASMC through a PKA-dependent mechanism by acting through EP(2) and EP(4) prostanoid receptors and that effective antagonism is realized only when both subtypes are blocked concurrently.  相似文献   

2.
Aberrant upregulation of COX-2 enzyme resulting in accumulation of PGE2 in a cancer cell environment is a marker for progression of many cancers, including breast cancer. Four subtypes of cell surface receptors (EP1, EP2, EP3, and EP4), which are coupled with different G-proteins, mediate PGE2 actions. Since migration is an essential step in invasion and metastasis, in the present study we defined the expression of EP receptors and their roles in migratory function of breast cancer cells of murine (C3L5) and human (MDA-MB-231 and MCF-7) origin. Highly metastatic C3L5 and MDA-MB-231 cells, found to be highly migratory in a Transwell migration assay, were shown to accumulate much higher levels of PGE2 in culture media in comparison with nonmetastatic and poorly migrating MCF-7 cells; the levels of PGF2alpha and 6-keto-PGF1alpha were low in all cases. The elevated PGE2 production by metastatic cancer cells was due to COX-2 activity since dual COX-1/2 inhibitor indomethacin and selective COX-2 inhibitor NS-398 equally suppressed both basal and inducible (by IFN-gamma/LPS or Ca2+-ionophores) PGE2 accumulation. RT-PCR analysis revealed that murine C3L5 cells expressed mRNA of EP1, EP3, and EP4 but not EP2 receptors. On the other hand, human MDA-MB-231 and MCF-7 cells expressed all the above receptors. High levels of expression of functional EP4 receptors coupled with Gs-protein was confirmed in C3L5 cells by biochemical assay showing a dose-dependent increase of intracellular cAMP synthesis in response to PGE2. EP receptor antagonists SC-19220, AH-6809, and AH-23848B, having highest affinity for EP1, EP1/EP2/DP, and EP4 receptors, respectively, variably inhibited migration of metastatic breast cancer cells. An autocrine PGE2-mediated migratory activity of these cells appeared to be associated predominantly with EP4 receptor-mediated signaling pathway, which uses cAMP as a second messenger. This conclusion is based on several observations: (1) selective EP4 antagonist AH-23848B effectively inhibited migration of both C3L5 and MDA-MB-231 cells in a dose-dependent manner; (2) exogenous PGE2 and EP4 agonist PGE1 alcohol increased migration of C3L5 cells; (3) forskolin, a potent activator of adenylate cyclase, as well as membrane-permeable analogues of cAMP (8-bromo-cAMP, dibutyryl-cAMP) stimulated migration of C3L5 cells; and (4) Rp-cAMPS, a selective protein kinase A inhibitor, reduced migration of C3L5 cells. Migration of poorly migratory MCF-7 cells remained unaffected with either PGE2 or EP4 antagonist. These findings are relevant for designing therapeutic strategies against breast cancer metastasis.  相似文献   

3.
The effects of PGE(2) on longitudinal smooth muscle, the intracellular mechanisms involved, and the localization of EP receptors were investigated in rabbit small intestine. PGE(2) evoked contractions in small intestine that were reduced by tetrodotoxin and hexamethonium. 17-Phenyl trinor PGE(2), sulprostone, misoprostol and 16,16-dimethyl PGE(2) evoked contractions. Butaprost did not modify spontaneous motility. AH 6809 reduced PGE(2) and 17-phenyl trinor PGE(2)-induced contractions. Verapamil, Ca(2+) free medium, staurosporine, forskolin, theophylline, and rolipram diminished, while IP-20 and H-89 increased PGE(2)-induced contractions. Western blot analysis showed protein bands of 41kDa for EP(1), 71kDa for EP(2) and 62kDa for EP(3) receptors. EP(1), EP(2) and EP(3) receptors were detected in neurons of the myenteric and submucosal ganglia, but only EP(3) receptors were found in smooth muscle layers. This study did not detect EP(4) receptor. PGE(2)-induced contractions would be mediated through EP(1) and EP(3) receptors, and voltage-dependent Ca(2+) channels, protein kinase C, and cAMP would be implicated in these responses.  相似文献   

4.
Accumulating evidence suggests that COX-2-derived prostaglandin E(2) (PGE(2)) plays an important role in esophageal adenocarcinogenesis. Recently, PGE(2) receptors (EP) have been shown to be involved in colon cancer development. Since it is not known which receptors regulate PGE(2) signals in esophageal adenocarcinoma, we investigated the role of EP receptors using a human Barrett's-derived esophageal adenocarcinoma cell line (OE33). OE33 cells expressed COX-1, COX-2, EP(1), EP(2) and EP(4) but not EP(3) receptors as determined by real time RT-PCR and Western-blot. Treatment with 5-aza-dC restored expression, suggesting that hypermethylation is involved in EP(3) downregulation. Endogenous PGE(2) production was mainly due to COX-2, since this was significantly suppressed with COX-2 inhibitors (NS-398 and SC-58125), but not COX-1 inhibitors (SC-560). Cell proliferation ((3)H-thymidine uptake) was significantly inhibited by NS-398 and SC-58125, the EP(1) antagonist SC-51322, AH6809 (EP(1)/EP(2) antagonist), and the EP(4) antagonist AH23848B, but was not affected by exogenous PGE(2). However, treatment with the selective EP(2) agonist Butaprost or 16,16-dimethylPGE(2) significantly inhibited butyrate-induced apoptosis and stimulated OE33 cell migration. The effect of exogenous PGE(2) on migration was attenuated when cells were first treated with EP(1) and EP(4) antagonists. These findings suggest a potential role for EP selective antagonists in the treatment of esophageal adenocarcinoma.  相似文献   

5.
The interstitial cells of Cajal (ICC) are pacemaker cells in gastrointestinal tract and generate an electrical rhythm in gastrointestinal muscles. We investigated the possibility that PGE(2) might affect the electrical properties of cultured ICC by activating ATP-dependent K(+) channels and, the EP receptor subtypes and the subunits of ATP-dependent K(+) channels involved in these activities were identified. In addition, the regulation of intracellular Ca(2+) ([Ca(2+)](i)) mobilization may be involved the action of PGE(2) on ICC. Treatments of ICC with PGE(2) inhibited electrical pacemaker activities in the same manner as pinacidil, an ATP-dependent K(+) channel opener and PGE(2) had only a dose-dependent effect. Using RT-PCR technique, we found that ATP-dependent K(+) channels exist in ICC and that these are composed of K(ir) 6.2 and SUR 2B subunits. To characterize the specific membrane EP receptor subtypes in ICC, EP receptor agonists and RT-PCR were used: Butaprost (an EP(2) receptor agonist) showed the actions on pacemaker currents in the same manner as PGE(2). However sulprostone (a mixed EP(1) and EP(3) agonist) had no effects. In addition, RT-PCR results indicated the presence of the EP(2) receptor in ICC. To investigate cAMP involvement in the effects of PGE(2) on ICCs, SQ-22536 (an inhibitor of adenylate cyclase) and cAMP assays were used. SQ-22536 did not affect the effect of PGE(2) on pacemaker currents, and PGE(2) did not stimulate cAMP production. Also, we found PGE(2) inhibited the spontaneous [Ca(2+)](i) oscillations in cultured ICC. These observations indicate that PGE(2) alters pacemaker currents by activating the ATP-dependent K(+) channels comprised of K(ir) 6.2-SUR 2B in ICC and this action of PGE(2) are through EP(2) receptor subtype and also the activation of ATP-dependent K(+) channels involves intracellular Ca(2+) mobilization.  相似文献   

6.
Lubiprostone, a bicyclic fatty acid derivative and member of a new class of compounds called prostones, locally activates ClC-2 Cl(-) channels without activation of prostaglandin receptors. The present study was specifically designed to test and compare lubiprostone and prostaglandin effects at the cellular level using human uterine smooth muscle cells. Effects on [Ca(2+)](i), membrane potential and [cAMP](i) in human uterine smooth muscle cells were measured. 10 nM lubiprostone significantly decreased [Ca(2+)](i) from 188 to 27 nM, which was unaffected by 100 nM SC-51322, a prostaglandin EP receptor antagonist. In contrast 10nM PGE(2) and PGE(1) both increased [Ca(2+)](i) 3-5-fold which was blocked by SC-51322. Similarly, lubiprostone and prostaglandins had opposite/different effects on membrane potential and [cAMP](i). Lubiprostone caused SC-51322-insensitive membrane hyperpolarization and no effect on [cAMP](i). PGE(2) and PGE(1) both caused SC-51322-sensitive membrane depolarization and increased [cAMP](i). Lubiprostone has fundamentally different cellular effects from prostaglandins that are not mediated by EP receptors.  相似文献   

7.
Osteocytes embedded in the matrix of bone are thought to be mechanosensory cells that translate mechanical strain into biochemical signals that regulate bone modeling and remodeling. We have shown previously that fluid flow shear stress dramatically induces prostaglandin release and COX-2 mRNA expression in osteocyte-like MLO-Y4 cells, and that prostaglandin E2 (PGE2) released by these cells functions in an autocrine manner to regulate gap junction function and connexin 43 (Cx43) expression. Here we show that fluid flow regulates gap junctions through the PGE2 receptor EP2 activation of cAMP-dependent protein kinase A (PKA) signaling. The expression of the EP2 receptor, but not the subtypes EP1,EP3, and EP4, increased in response to fluid flow. Application of PGE2 or conditioned medium from fluid flow-treated cells to non-stressed MLO-Y4 cells increased expression of the EP2 receptor. The EP2 receptor antagonist, AH6809, suppressed the stimulatory effects of PGE2 and fluid flow-conditioned medium on the expression of the EP2 receptor, on Cx43 protein expression, and on gap junction-mediated intercellular coupling. In contrast, the EP2 receptor agonist butaprost, not the E1/E3 receptor agonist sulprostone, stimulated the expression of Cx43 and gap junction function. Fluid flow conditioned medium and PGE2 stimulated cAMP production and PKA activity suggesting that PGE2 released by mechanically stimulated cells is responsible for the activation of cAMP and PKA. The adenylate cyclase activators, forskolin and 8-bromo-cAMP, enhanced intercellular connectivity, the number of functional gap junctions, and Cx43 protein expression, whereas the PKA inhibitor, H89, inhibited the stimulatory effect of PGE2 on gap junctions. These studies suggest that the EP2 receptor mediates the effects of autocrine PGE2 on the osteocyte gap junction in response to fluid flow-induced shear stress. These data support the hypothesis that the EP2 receptor, cAMP, and PKA are critical components of the signaling cascade between mechanical strain and gap junction-mediated communication between osteocytes.  相似文献   

8.
9.
This study investigated the effects and selectivity of ONO-AE-248, ONO-DI-004, ONO-8711 and ONO-8713 on EP1 and EP3 receptors in human pulmonary vessels. The prostanoid receptors involved in the vasoconstriction of human pulmonary arteries (HPA) are TP and EP3 whereas in pulmonary veins (HPV), this response is associated with TP and EP1. The experiments were performed in presence of BAY u3405 (TP antagonist). ONO-DI-004 (EP1 agonist) and ONO-AE-248 (EP3 agonist), exhibited little or no activity in HPV whereas contractions were induced in HPA with ONO-AE-248. In HPV, the contractions produced with sulprostone (EP1,3 agonist) were blocked in a non competitive manner by both EP1 antagonists (ONO-8711, 30 microM; ONO-8713, 10 microM). The involvement of EP1 mediated contraction in HPV was also observed during the vasorelaxations induced with PGE1 and 5-cis-carba-PGI2. In pre-contracted HPV treated with AH6809 (30 microM; EP1 antagonist) the PGE1 vasorelaxations were potentiated, while unchanged in HPA. These results demonstrate the selectivity of ONO-AE-248 for the EP3 receptor in HPA, ONO-DI-004 was ineffective on the EP1 receptor present in HPV while ONO-8713 was the more potent EP1 antagonist used in this tissue.  相似文献   

10.
Activation of cardiac mast cells has been shown to alter parasympathetic neuronal function via the activation of histamine receptors. The present study examined the ability of prostaglandins to alter the activity of guinea pig intracardiac neurons. Intracellular voltage recordings from whole mounts of the cardiac plexus showed that antigen-mediated mast cell degranulation produces an attenuation of the afterhyperpolarization (AHP), which was prevented by the phospholipase A2 inhibitor 5,8,11,14-eicosatetraynoic acid. Exogenous application of either PGD2 or PGE2 produced a biphasic change in the membrane potential and an inhibition of both AHP amplitude and duration. Examination of prostanoid receptors using bath perfusions (1 microM PGE2 and PGD2), specific agonists (BW245C, sulprostone, and butaprost), and antagonists (AH6809 and SC19220) found evidence for both the PGE2-specific EP2 and EP3 receptors, but not for EP1 or the PGD2-specific prostanoid (DP) receptors. Sulprostone was able to mimic the PGE2 responses in some cells, but not in all PGE2-sensitive cells. Butaprost was able to mimic the PG-induced hyperpolarization in some cells, but did not alter the AHP. Inhibition of specific potassium channels with either TEA, charybdotoxin, or apamin showed that neither TEA nor charybdotoxin could prevent the PGE2-induced AHP attenuation. Apamin alone inhibited AHP duration, with PGs having no further effect in these cells. These results demonstrate that guinea pig intracardiac neurons can be modulated by PG, most likely through either EP2, EP3, or potentially EP4 receptors, and this response is due, at least in part, to a reduction in small-conductance KCa currents.  相似文献   

11.
Gastrointestinal ulcerogenic effect of indomethacin is causally related with an endogenous prostaglandin (PG) deficiency, yet the detailed mechanism remains unknown. We examined the effect of various PGE analogues specific to EP receptor subtypes on these lesions in rats and mice, and investigated which EP receptor subtype is involved in the protective action of PGE(2). Fasted or non-fasted animals were given indomethacin s.c. at 35 mg/kg for induction of gastric lesions or 10-30 mg/kg for intestinal lesions, and they were killed 4 or 24 h later, respectively. Various EP agonists were given i.v. 10 min before indomethacin. Indomethacin caused hemorrhagic lesions in both the stomach and intestine. Prior administration of 16,16-dimethyl PGE(2) (dmPGE(2)) prevented the development of damage in both tissues, and the effect in the stomach was mimicked by 17-phenyl PGE2 (EP1), while that in the small intestine was reproduced by ONO-NT-012 (EP3) and ONO-AE-329 (EP4). Butaprost (EP2) did not have any effect on either gastric or intestinal lesions induced by indomethacin. Similar to the findings in rats, indomethacin caused gastric and intestinal lesions in both wild-type and knockout mice lacking EP1 or EP3 receptors. However, the protective action of dmPGE(2) in the stomach was observed in wild-type and EP3 receptor knockout mice but not in mice lacking EP1 receptors, while that in the intestine was observed in EP1 knockout as well as wild-type mice but not in the animals lacking EP3 receptors. These results suggest that indomethacin produced damage in the stomach and intestine in a PGE(2)-sensitive manner, and exogenous PGE(2) prevents gastric and intestinal ulcerogenic response to indomethacin through different EP receptor subtypes; the protection in the stomach is mediated by EP1 receptors, while that in the intestine mediated by EP3/EP4 receptors.  相似文献   

12.
Activation of the prostaglandin E(2) (PGE(2)) EP(4) receptor, a G-protein-coupled receptor (GPCR), results in increases in intracellular cyclic AMP (cAMP) levels via stimulation of adenylate cyclase. Here we describe the in vitro pharmacological characterization of a novel EP(4) receptor antagonist, CJ-042794 (4-{(1S)-1-[({5-chloro-2-[(4-fluorophenyl)oxy]phenyl}carbonyl)amino]ethyl}benzoic acid). CJ-042794 inhibited [(3)H]-PGE(2) binding to the human EP(4) receptor with a mean pK(i) of 8.5, a binding affinity that was at least 200-fold more selective for the human EP(4) receptor than other human EP receptor subtypes (EP(1), EP(2), and EP(3)). CJ-042794 did not exhibit any remarkable binding to 65 additional proteins, including GPCRs, enzymes, and ion channels, suggesting that CJ-042794 is highly selective for the EP(4) receptor. CJ-042794 competitively inhibited PGE(2)-evoked elevations of intracellular cAMP levels in HEK293 cells overexpressing human EP(4) receptor with a mean pA(2) value of 8.6. PGE(2) inhibited the lipopolysaccharide (LPS)-induced production of tumor necrosis factor alpha (TNFalpha) in human whole blood (HWB); CJ-042794 reversed the inhibitory effects of PGE(2) on LPS-induced TNFalpha production in a concentration-dependent manner. These results suggest that CJ-042794, a novel, potent, and selective EP(4) receptor antagonist, has excellent pharmacological properties that make it a useful tool for exploring the physiological role of EP(4) receptors.  相似文献   

13.
We examined, by using a specific PGE receptor subtype EP4 agonist and antagonist, the involvement of EP4 receptors in duodenal HCO(3)(-) secretion induced by PGE(2) and mucosal acidification in rats. Mucosal acidification was achieved by exposing a duodenal loop to 10 mM HCl for 10 min, and various EP agonists were given intravenously 10 min before the acidification. Secretion of HCO(3)(-) was dose-dependently stimulated by AE1-329 (EP4 agonist), the maximal response being equivalent to that induced by sulprostone (EP1/EP3 agonist) or PGE(2). The stimulatory action of AE1-329 and PGE(2) but not sulprostone was attenuated by AE3-208, a specific EP4 antagonist. This antagonist also significantly mitigated the acid-induced HCO(3)(-) secretion. Coadministration of sulprostone and AE1-329 caused a greater secretory response than either agent alone. IBMX potentiated the stimulatory action of both sulprostone and AE1-329, whereas verapamil mitigated the effect of sulprostone but not AE1-329. Chemical ablation of capsaicin-sensitive afferent neurons did not affect the response to any of the EP agonists used. We conclude that EP4 receptors are involved in the duodenal HCO(3)(-) response induced by PGE(2) or acidification in addition to EP3 receptors. The process by which HCO(3)(-) is secreted through these receptors differs regarding second-messenger coupling. Stimulation through EP4 receptors is mediated by cAMP, whereas that through EP3 receptors is regulated by both cAMP and Ca(2+); yet there is cooperation between the actions mediated by these two receptors. The neuronal reflex pathway is not involved in stimulatory actions of these prostanoids.  相似文献   

14.
Prostaglandin E(2) (PGE(2)) has a strong protective effect on the gastric mucosa in vivo; however, the molecular mechanism of a direct cytoprotective effect of PGE(2) on gastric mucosal cells has yet to be elucidated. Although we reported previously that PGE(2) inhibited gastric irritant-induced apoptotic DNA fragmentation in primary cultures of guinea pig gastric mucosal cells, we show here that PGE(2) inhibits the ethanol-dependent release of cytochrome c from mitochondria. Of the four main subtypes of PGE(2) receptors, we also demonstrated, using subtype-specific agonists, that EP(2) and EP(4) receptors are involved in the PGE(2)-mediated protection of gastric mucosal cells from ethanol-induced apoptosis. Activation of EP(2) and EP(4) receptors is coupled with an increase in cAMP, for which a cAMP analogue was found here to inhibit the ethanol-induced apoptosis. The increase in cAMP is known to activate both protein kinase A (PKA) and phosphatidylinositol 3-kinase pathways. An inhibitor of PKA but not of phosphatidylinositol 3-kinase blocked the PGE(2)-mediated protection of cells from ethanol-induced apoptosis, suggesting that a PKA pathway is mainly responsible for the PGE(2)-mediated inhibition of apoptosis. Based on these results, we considered that PGE(2) inhibited gastric irritant-induced apoptosis in gastric mucosal cells via induction of an increase in cAMP and activation of PKA, and that this effect was involved in the PGE(2)-mediated protection of the gastric mucosa from gastric irritants in vivo.  相似文献   

15.
Cyclooxygenase-2 (COX-2)-dependent prostaglandin E(2) (PGE(2)) synthesis correlates with the onset of proteinuria and increased glomerular capillary pressure (P(gc)) glomerular disease models. We previously showed that an in vitro surrogate for P(gc) (cyclical mechanical stretch) upregulates the expression of both COX-2 and the PGE(2) responsive E-Prostanoid receptor, EP(4) in cultured mouse podocytes. In the present study we further delineate the signaling pathways regulating podocyte COX-2 induction. Time course experiments carried out in conditionally-immortalized mouse podocytes revealed that PGE(2) transiently increased phosphorylated p38 MAPK levels at 10 min, and induced COX-2 protein expression at 4 h. siRNA-mediated knockdown of EP(4) receptor expression, unlike treatment with the EP(1) receptor antagonist SC 19220, completely abrogated PGE(2)-induced p38 phosphorylation and COX-2 upregulation suggesting the involvement of the EP(4) receptor subtype. PGE(2)-induced COX-2 induction was abrogated by inhibition of either p38 MAPK or AMP activated protein kinase (AMPK), and was mimicked by AICAR, a selective AMPK activator, and by the cAMP-elevating agents, forskolin (FSK) and IBMX. Surprisingly, neither PGE(2) nor FSK/IBMX-dependent p38 activation and COX-2 expression were blocked by PKA inhibitors or mimicked by 8-cPT-cAMP a selective EPAC activator, but were instead abrogated by Compound C, suggesting the involvement of AMPK. These results indicate that in addition to mechanical stretch, PGE(2) initiates a positive feedback loop in podocytes that drives p38 MAPK activity and COX-2 expression through a cAMP/AMPK-dependent, but PKA-independent signaling cascade. This PGE(2)-induced signaling network activated by increased P(gc) could be detrimental to podocyte health and glomerular filtration barrier integrity.  相似文献   

16.
Prostaglandins (PGs) have been shown to play various roles in adipogenesis. In this study, we investigated on which PGE receptor subtypes are involved in the inhibition of 3T3-L1 preadipocyte differentiation. The triglyceride content of cells, used as an index of differentiation, was decreased when PGE(2), the FP-agonist fluprostenol or dibutyryl cAMP, was exogenously added to differentiation cocktails. 3T3-L1 preadipocyte cells express mRNAs for the prostanoid EP4, FP, and IP receptors. PGE(2) and the EP4 agonist AE1-329 increased cAMP levels in preadipocytes in a dose-dependent manner. AE1-329 suppressed the expression induction of differentiation marker genes such as resistin and peroxisome proliferator-activated receptor-gamma. The inhibitory effect of PGE(2) but not that of fluprostenol was reversed by the addition of the EP4 antagonist AE3-208. AE3-208 mimicked the differentiation-promoting effects of indomethacin. These results suggest that the EP4 receptor mediates the suppressive action of PGE(2) in 3T3-L1 adipocyte differentiation.  相似文献   

17.
Wild-type (WT) Rat-1 fibroblasts express undetectable quantities of the prostaglandin E(2) (PGE(2)) EP1, EP2, and EP3 receptor types and detectable amounts of the EP4 receptor. In the WT Rat-1, PGE(2) enhances connective tissue growth factor (CTGF) mRNA. PGE(2) does not stimulate cAMP production in these cells. However, forskolin induces cAMP production and ablates TGF beta-stimulated increases in CTGF mRNA. A similar pattern of CTGF expression in response to PGE(2) and forskolin is observed in neonatal rat primary smooth muscle cell cultures. When WT Rat-1 cells are stably transfected with the EP2 receptor, PGE(2) causes a sizable elevation in intracellular cAMP and ablates the TGF beta-stimulated increase in CTGF mRNA. PGE(2) does not have this effect on cells expressing the EP1, EP3, or EP4 receptor subtypes. These results demonstrate the importance of the EP2 receptor and cAMP in the inhibition of TGF beta-stimulated CTGF production and suggest a role for PGE(2) in increasing CTGF mRNA levels in the absence of the EP2 receptor. Involvement of inositol phosphate in this upregulation of CTGF expression by PGE(2) is doubtful. None of the cell lines containing the four EP transfectants nor the WT Rat-1 cells responded to PGE(2) with inositol phosphate production.  相似文献   

18.
EP2 and EP4 prostanoid receptor signaling   总被引:13,自引:0,他引:13  
Regan JW 《Life sciences》2003,74(2-3):143-153
  相似文献   

19.
In this study, we investigated the signaling pathway involved in IL-6 production caused by peptidoglycan (PGN), a cell wall component of the Gram-positive bacterium, Staphylococcus aureus, in RAW 264.7 macrophages. PGN caused concentration- and time-dependent increases in IL-6, PGE(2), and cAMP production. PGN-mediated IL-6 production was inhibited by a nonselective cyclooxygenase (COX) inhibitor (indomethacin), a selective COX-2 inhibitor (NS398), a PGE(2) (EP2) antagonist (AH6809), a PGE(4) (EP4) antagonist (AH23848), and a protein kinase A (PKA) inhibitor (KT5720), but not by a nonselective NO synthase inhibitor (N(G)-nitro-l-arginine methyl ester). Furthermore, PGE(2), an EP2 agonist (butaprost), an EP2/PGE(3) (EP3)/EP4 agonist (misoprostol), and misoprostol in the presence of AH6809 all induced IL-6 production, whereas an EP1/EP3 agonist (sulprostone) did not. PGN caused time-dependent activations of IkappaB kinase alphabeta (IKKdbeta) and p65 phosphorylation at Ser(276), and these effects were inhibited by NS398 and KT5720. Both PGE(2) and 8-bromo-cAMP also caused IKKdbeta kinase alphabeta phosphorylation. PGN resulted in two waves of the formation of NF-kappaB-specific DNA-protein complexes. The first wave of NF-kappaB activation occurred at 10-60 min of treatment, whereas the later wave occurred at 2-12 h of treatment. The PGN-induced increase in kappaB luciferase activity was inhibited by NS398, AH6809, AH23848, KT5720, a protein kinase C inhibitor (Ro31-8220), and a p38 MAPK inhibitor (SB203580). These results suggest that PGN-induced IL-6 production involves COX-2-generated PGE(2), activation of the EP2 and EP4 receptors, cAMP formation, and the activation of PKA, protein kinase C, p38 MAPK, IKKdbeta, kinase alphabeta, p65 phosphorylation, and NF-kappaB. However, PGN-induced NO release is not involved in the signaling pathway of PGN-induced IL-6 production.  相似文献   

20.
The cyclooxygenase-prostanoid pathway regulates myometrial contractility through activation of prostanoid receptors on uterine smooth muscles. However, the possible expression of prostanoid receptors on autonomic nerves cannot be excluded completely. The aim of the present study was to clarify the presence of neural prostanoid receptors on adrenergic nerves in the porcine uterine longitudinal muscle. In [(3)H]-noradrenaline-loaded longitudinal muscle strips of porcine uterus, electrical field stimulation (EFS) evoked [(3)H]-noradrenaline release in a stimulation frequency-dependent manner. The EFS-evoked release was completely abolished in Ca(2+)-free (EGTA, 1mM) incubation medium and by tetrodotoxin or omega-conotoxin GVIA, suggesting that [(3)H]-noradrenaline was released from neural components. The EFS-evoked [(3)H]-noradrenaline release was significantly enhanced by treatment with indomethacin. In the presence of indomethacin, PGE(2) and PGF(2alpha), but not PGD(2), inhibited the EFS-evoked [(3)H]-noradrenaline release. Of synthetic prostanoid receptor agonists examined, both U46619 (TP) and sulprostone (EP(1)/EP(3)) decreased the EFS-evoked [(3)H]-noradrenaline release in a concentration-dependent manner, while fluprostenol (FP), BW245C (DP) and butaprost (EP(2)) were almost ineffective. SQ29548 (TP receptor antagonist) blocked the effect of U46619, but SC19220 (EP(1) receptor antagonist) did not change the inhibition by sulprostone or PGE(2). Double immunofluorescence staining using protein gene product 9.5, tyrosine hydroxylase, EP(3) receptor and TP receptor antibodies suggested the localization of EP(3) or TP receptors on adrenergic nerves in the porcine uterus. These results indicated that neural EP(3) and TP receptors are present on adrenergic nerves of the porcine uterine longitudinal muscle. Endogenous prostanoid produced by cyclooxygenase can regulate noradrenaline release in an inhibitory manner through activation of these neural prostanoid receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号