首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular mechanism for polyamine-stimulated feedback modification of ornithine decarboxylase isolated from Physarum polycephalum was investigated by using two-dimensional polyacrylamide-gel electrophoresis. Partially purified A-form enzyme was converted into the B-form enzyme by isolated fractions of the Physarum A-B-converting protein, and the substrates and products were subsequently labelled by covalent addition of alpha-difluoro[14C]methylornithine, an enzyme-activated irreversible inhibitor. The active (A-form) and inactive (B-form) states of this enzyme were found to have the same Mr value, 52 000, yet they differed noticeably in their pI values, 5.45 and 5.65 respectively. In further experiments, the use of high-specific-radioactivity [3H]spermidine to stimulate this enzyme modification was shown not to result in the covalent attachment of this polyamine to ornithine decarboxylase. These results demonstrate that the polyamine-induced modification of ornithine decarboxylase in Physarum is not due to any of the mechanisms previously suggested for ornithine decarboxylase inactivation in this and other eukaryotes, namely phosphorylation, covalent polyamine addition or the non-covalent association of a specific low-Mr protein.  相似文献   

2.
Incubation with protein kinase NII did not result in phosphorylation or inactivation of mouse kidney ornithine decarboxylase. Partially purified ornithine decarboxylase preparations contained a protein kinase activity and stimulated the activity of RNA polymerase I. However, these properties were due to contaminating protein(s) since further purification reduced the kinase activity and removal of the ornithine decarboxylase with a specific antiserum did not abolish the ability to stimulate RNA polymerase I. Antibodies to RNA polymerase I did not interact with ornithine decarboxylase and antibodies to ornithine decarboxylase did not interact with RNA polymerase I. These results indicate that: a) mammalian ornithine decarboxylase activity is not regulated by phosphorylation by protein kinase NII or the contaminating kinase, and b) the ability of impure preparations of ornithine decarboxylase to stimulate RNA polymerase I is due to a contaminating unrelated protein.  相似文献   

3.
Ornithine decarboxylase from the African trypanosome is an important target for antitrypanosomal chemotherapy. Despite this, the enzyme had not been previously purified or extensively characterized as it is a very low level protein. In this paper we describe the purification of Trypanosoma brucei brucei ornithine decarboxylase from bloodstream form trypomastigotes by 107,000-fold to a specific activity of 2.7 x 10(6) nmol CO2/h/mg of protein in the parasite. T. brucei ornithine decarboxylase had a native molecular weight of 90,000 and a subunit molecular weight of 45,000. The isoelectric point of the protein was 5.0. The Km for ornithine was 280 microM and the Ki for the irreversible inhibitor alpha-difluoromethylornithine (DFMO) was 220 microM with a half-time of inactivation at saturating DFMO concentration of 2.7 min. T. brucei ornithine decarboxylase appears similar to mouse ornithine decarboxylase, further supporting our previous suggestion that the selective toxicity of DFMO to the parasite is not due to catalytic differences between the two proteins. Although a small quantity of T. brucei ornithine decarboxylase was purified from T. brucei, extensive structural and kinetic studies will require a more ample source of the enzyme. We therefore expressed our previously cloned T. brucei ornithine decarboxylase gene in Escherichia coli using a vector that contains an inducible lambda promoter. T. brucei ornithine decarboxylase activity was induced in E. coli to levels that were 50 to 200 fold of that present in the long-slender bloodstream form of T. brucei. Ornithine decarboxylase activity in the crude E. coli lysate was 1500-6000 nmol of CO2/h/mg of protein and represented 0.05-0.2% of the total cell protein. The recombinant T. brucei ornithine decarboxylase was purified to apparent homogeneity from the transformed E. coli. The purified recombinant enzyme had kinetic and physical properties essentially identical to those of the native enzyme.  相似文献   

4.
A human neuroblastoma cell line (Paju) grew in 10 mM difluoromethyl-ornithine, which at this concentration normally stops the growth of all mammalian cells. Ornithine decarboxylase from Paju was resistant to inhibition in vitro by difluoromethylornithine, and required 10 microM of the compound for 50% inhibition, whereas ornithine decarboxylase from SH-SY5Y cells (another human neuroblastoma) and from rat liver needed only 0.5 microM difluoromethylornithine. Paju ornithine decarboxylase also exhibited a long half-life (over eight hours) in vivo. The half-life of immunoreactive protein was significantly longer than that of the activity. The long half-life of ornithine decarboxylase in Paju cells leads to its accumulation to a specific activity of 2000 nmol/mg of protein per 30 min during rapid growth (the corresponding activity in SH-SY5Y cells was about 2.5). When partially purified ornithine decarboxylase from Paju cells was incubated with rat liver microsomes it was inactivated with a half-life of 75 min. This inactivation was accompanied by a fall in the amount of immunoreactive protein. In the same inactivating system partially purified SH-SY5Y ornithine decarboxylase had a half-life of 38 min and its half-life in vivo was 50 min. The corresponding values for rat liver ornithine decarboxylase were 45 min and 40 min, respectively. Rat liver microsomes also inactivated rat liver adenosylmethionine decarboxylase. These results suggest that Paju ornithine decarboxylase has an altered molecular conformation, rendering it resistant to (i) difluoromethylornithine and (ii) proteolytic degradation both in vivo and in vitro.  相似文献   

5.
Ornithine decarboxylase has been purified 1,500-fold to homogeneity from a spe2 mutant of Saccharomyces cerevisiae which lacks S-adenosylmethionine decarboxylase and is derepressed for ornithine decarboxylase. The ornithine decarboxylase is a single polypeptide (Mr = 68,000) and requires a thiol and pyridoxal phosphate for activity. Addition of 10(-4) M spermidine and 10(-4) M spermine to the growth medium reduces the activity of the enzyme by 90% in 4 h. However, immunoprecipitation studies showed that the extracts of polyamine-treated cells contain as much enzyme protein as normal cell extracts. This loss of ornithine decarboxylase activity is probably due to a post-translational modification of enzyme protein because we found no evidence for any inhibitor of activity in the polyamine-treated cells.  相似文献   

6.
Comparisons were made of ornithine decarboxylase isolated from Morris hepatoma 7777, thioacetamide-treated rat liver and androgen-stimulated mouse kidney. The enzymes from each source were purified in parallel and their size, isoelectric point, interaction with a monoclonal antibody or a monospecific rabbit antiserum to ornithine decarboxylase, and rates of inactivation in vitro, were studied. Mouse kidney, which is a particularly rich source of ornithine decarboxylase after androgen induction, contained two distinct forms of the enzyme which differed slightly in isoelectric point, but not in Mr. Both forms had a rapid rate of turnover, and virtually all immunoreactive ornithine decarboxylase protein was lost within 4h after protein synthesis was inhibited. Only one form of ornithine decarboxylase was found in thioacetamide-treated rat liver and Morris hepatoma 7777. No differences between the rat liver and hepatoma ornithine decarboxylase protein were found, but the rat ornithine decarboxylase could be separated from the mouse kidney ornithine decarboxylase by two-dimensional gel electrophoresis. The rat protein was slightly smaller and had a slightly more acid isoelectric point. Studies of the inactivation of ornithine decarboxylase in vitro in a microsomal system [Zuretti & Gravela (1983) Biochim. Biophys. Acta 742, 269-277] showed that the enzymes from rat liver and hepatoma 7777 and mouse kidney were inactivated at the same rate. This inactivation was not due to degradation of the enzyme protein, but was probably related to the formation of inactive forms owing to the absence of thiol-reducing agents. Treatment with 1,3-diaminopropane, which is known to cause an increase in the rate of degradation of ornithine decarboxylase in vivo [Seely & Pegg (1983) Biochem. J. 216, 701-717] did not stimulate inactivation by microsomal extracts, indicating that this system does not correspond to the rate-limiting step of enzyme breakdown in vivo.  相似文献   

7.
Ornithine decarboxylase, the rate-limiting enzyme in the polyamine biosynthetic pathway has been purified 7,600 fold from Plasmodium falciparum by affinity chromatography on a pyridoxamine phosphate column. The partially purified enzyme was specifically tagged with radioactive DL-alpha-difluoromethylornithine and subjected to polyacrylamide gel electrophoresis under denaturing conditions. A major protein band of 49 kilodalton was obtained while with the purified mouse enzyme, a typical 53 kilodalton band, was observed. The catalytic activity of parasite enzyme was dependent on pyridoxal 5'-phosphate and was optimal at pH 8.0. The apparent Michaelis constant for L-ornithine was 52 microM. DL-alpha-difluoromethylornithine efficiently and irreversibly inhibited ornithine decarboxylase activity from P. falciparum grown in vitro or Plasmodium berghei grown in vivo. The Ki of the human malarial enzyme for this inhibitor was 16 microM. Ornithine decarboxylase activity in P. falciparum cultures was rapidly lost upon exposure to the direct product, putrescine. Despite the profound inhibition of protein synthesis with cycloheximide in vitro, parasite enzyme activity was only slightly reduced by 75 min of treatment, suggesting a relatively long half-life for the malarial enzyme. Ornithine decarboxylase activity from P. falciparum and P. berghei was not eliminated by antiserum prepared against purified mouse enzyme. Furthermore, RNA or DNA extracted from P. falciparum failed to hybridize to a mouse ornithine decarboxylase cDNA probe. These results suggest that ODC from P. falciparum bears some structural differences as compared to the mammalian enzyme.  相似文献   

8.
A monoclonal antibody of the immunoglobulin M class was produced against mouse kidney ornithine decarboxylase. Screening for the antibody was carried out using alpha-difluoromethyl[5-3H]ornithine-labelled ornithine decarboxylase. The antibody reacted with this antigen and with native ornithine decarboxylase. The antibody attached to Sepharose could be used to form an immunoaffinity column that retained mammalian ornithine decarboxylase. The active enzyme could then be eluted in a highly purified form by 1.0M-sodium thiocyanate. The monoclonal antibody could also be used to precipitate labelled ornithine decarboxylase from homogenates of kidneys from androgen-treated mice given [35S]methionine. Only one band, corresponding to Mr of about 55000, was observed. The extensive labelling of this band is consistent with the rapid turnover of ornithine decarboxylase protein, since this enzyme represents only about 1 part in 10000 of the cytosolic protein.  相似文献   

9.
Neurospora crassa mycelia, when starved for polyamines, have 50-70-fold more ornithine decarboxylase activity and enzyme protein than unstarved mycelia. Using isotopic labeling and immunoprecipitation, we determined the half-life and the synthetic rate of the enzyme in mycelia differing in the rates of synthesis of putrescine, the product of ornithine decarboxylase, and spermidine, the main end-product of the polyamine pathway. When the pathway was blocked between putrescine and spermidine, ornithine decarboxylase synthesis rose 4-5-fold, regardless of the accumulation of putrescine. This indicates that spermidine is a specific signal for the repression of enzyme synthesis. When both putrescine and spermidine synthesis were reduced, the half-life of the enzyme rapidly increased 10-fold. The presence of either putrescine or spermidine restored the normal enzyme half-life of 55 min. Tests for an ornithine decarboxylase inhibitory protein ("antizyme") were negative. The regulatory mechanisms activated by putrescine and spermidine account for most or all of the regulatory amplitude of this enzyme in N. crassa.  相似文献   

10.
Ornithine decarboxylase was purified from androgen-treated mouse kidney to homogeneity and high specific activity. The purified enzyme was utilized for production and screening of rat monoclonal and polyclonal antibodies. A rat monoclonal antibody was isolated which was capable of immunoprecipitation of native mouse kidney ornithine decarboxylase activity or the [3H]difluoromethylornithine-inactivated enzyme. Phosphorylation of mouse ornithine decarboxylase by casein kinase-II prior to immunoprecipitation led to complete loss of the epitope recognized by the monoclonal antibody but did not alter recognition by polyclonal antibody. Mammalian ornithine decarboxylase activity obtained from several species, in crude or partially purified extracts, was subjected to quantitative immunoprecipitation with monoclonal and polyclonal antibody. Polyclonal antibody immunoprecipitated all of the ornithine decarboxylase activity from every extract tested, while monoclonal antibody was capable of only limited immunoprecipitation (60-80%). Due to the inability of the monoclonal antibody to recognize ornithine decarboxylase phosphorylated in vitro by casein kinase-II and the partial immunoprecipitation of ornithine decarboxylase activity from cell extracts, a portion of the ornithine decarboxylase molecule population must exist in a phosphorylated state. This immunological evidence further confirms existing data that the enzyme exists in at least two distinct forms.  相似文献   

11.
Partially purified ornithine decarboxylase, isolated from the liver of thioacetamide-treated rats, is stable in the absence of added low-molecular-mass thiols or other reducing agents. However, under these conditions, the enzyme is rapidly inactivated upon incubation with L-ornithine or L-2-methylornithine. The inactivation process follows first-order kinetics, and saturation kinetics are observed. Rapid recovery of activity is observed after subsequent addition of dithiothreitol. As distinct from L-ornithine, D-ornithine, putrescine, spermidine, or spermine do not produce inactivation of ornithine decarboxylase. Very similar results are obtained with pure ornithine decarboxylase isolated from androgen-stimulated mouse kidney, stabilized with a rat liver extract.  相似文献   

12.
Ornithine decarboxylase is the initial and rate-limiting enzyme in the polyamine biosynthetic pathway. Polyamines are found in all mammalian cells and are required for cell growth. We previously demonstrated that N-hydroxyarginine and nitric oxide inhibit tumor cell proliferation by inhibiting arginase and ornithine decarboxylase, respectively, and, therefore, polyamine synthesis. In addition, we showed that nitric oxide inhibits purified ornithine decarboxylase by S-nitrosylation. Herein we provide evidence for the chemical mechanism by which nitric oxide and S-nitrosothiols react with cysteine residues in ornithine decarboxylase to form an S-nitrosothiol(s) on the protein. The diazeniumdiolate nitric oxide donor agent 1-diethyl-2-hydroxy-2-nitroso-hydrazine acts through an oxygen-dependent mechanism leading to formation of the nitrosating agents N(2)O(3) and/or N(2)O(4). S-Nitrosoglutathione inhibits ornithine decarboxylase by an oxygen-independent mechanism likely by S-transnitrosation. In addition, we provide evidence for the S-nitrosylation of 4 cysteine residues per ornithine decarboxylase monomer including cysteine 360, which is critical for enzyme activity. Finally S-nitrosylated ornithine decarboxylase was isolated from intact cells treated with nitric oxide, suggesting that nitric oxide may regulate ornithine decarboxylase activity by S-nitrosylation in vivo.  相似文献   

13.
Translational regulation of mammalian ornithine decarboxylase by polyamines   总被引:19,自引:0,他引:19  
Ornithine decarboxylase, which catalyses the formation of putrescine, is the first and rate-limiting enzyme in the biosynthesis of polyamines in mammalian cells. The enzyme is highly regulated, as indicated by rapid changes in its mRNA and protein during cell growth. Here we report that ornithine decarboxylase is regulated at the translational level by polyamines in difluoromethylornithine-resistant mouse myeloma cells that overproduce the enzyme due to amplification of an ornithine decarboxylase gene. When such cells are exposed to putrescine or other polyamines, there is a rapid and specific decrease in the rate of synthesis of ornithine decarboxylase, assayed by pulse-labeling. Neither the cellular content of ornithine decarboxylase mRNA nor the half-life of ornithine decarboxylase protein is affected. Our results indicate that polyamines negatively regulate the translation of ornithine decarboxylase mRNA, thereby controlling their own synthesis.  相似文献   

14.
Ornitine decarboxylase was purified from androgen-treated mouse kidney to homogeneity and high specific activity. The purified enzyme was utilized for production and screeing of rat monoclonal and polyclonal antibodies. A rat monoclonal antibody was isolated which was capable of immunoprecipitation of native mouse kidney ornitine decarboxylase activity or the [3H]difluoromethylornithine-inactivated enzyme. Phosphorylation of mouse ornithine decarboxylase by casein kinase-II prior to immunoprecipitation led to complete loss of the epitope recognized by the monoclonal antibody but did not alter recognition by polyclonal antibody. Mammalian ornithine decarboxylase activity obtainied from several species, in crude or partially purified extracts, was subjected to quantitative immunoprecipitatin with monoclonal and polyclonal antibody. Polyclonal antibody immunoprecipitated all of the ornthine decarboxylase activity from every extract tested, while monoclonal antibody was capable of only limited immunoprecipitation (60–80%). Due to the inability of the monoclonal antibody to recognize ornithine decarboxylase phosphorylated in vitrol by casein kinase-II and the partial immunoprecipitation of ornithine decarboxylase activity from cell extracts, a portion of the ornithine decarboxylase molecule population must exist in a phosphrylated state. This immunological evidence further confirms existing data that the enzyme in at least two distinct forms.  相似文献   

15.
Ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) has been purified from 3T3- and SV40-transformed 3T3 mouse fibroblasts by affinity chromatography, and the physicochemical properties of the two enzymes compared. Measured properties include molecular weight of the active species, subunit molecular weight and specific activity of the purified enzymes, kinetic parameters, thermostability, degradation rate in vivo and immunological cross-reactivity. Although crude extracts of the transformant possess more ornithine decarboxylase activity per mg of protein than the parent strain, there is no evidence for the appearance of an altered form of the enzyme in these cells. The results reported in the present paper indicate that the increased ornithine decarboxylase activity in the transformed cells is the result of higher enzyme biosynthesis de novo.  相似文献   

16.
A radioimmunoassay for ornithine decarboxylase was used to study the regulation of this enzyme in rat liver. The antiserum used reacts with ornithine decarboxylase from mouse, human or rat cells. Rat liver ornithine decarboxylase enzyme activity and enzyme protein (as determined by radioimmunoassay) were measured in thioacetamide-treated rats at various times after administration of 1,3-diaminopropane. Enzyme activity declined rapidly after 1,3-diaminopropane treatment as did the amount of enzyme protein, although the disappearance of enzyme activity slightly preceded the loss of immunoreactive protein. The loss of enzyme protein after cycloheximide treatment also occurred rapidly, but was significantly slower than that seen with 1,3-diaminopropane. When 1,3-diaminopropane and cycloheximide were injected simultaneously, the rate of disappearance of enzyme activity and enzyme protein was the same as that seen with cycloheximide alone. These results show that the rapid loss in enzyme activity after 1,3-diaminopropane treatment is primarily due to a loss in enzyme protein and that protein synthesis is needed in order for 1,3-diaminopropane to exert its full effect. A macromolecular inhibitor of ornithine decarboxylase that has been termed antizyme is induced in response to 1,3-diaminopropane, but our results indicate that the loss of enzyme activity is not due to the accumulation of inactive ornithine decarboxylase-antizyme complexes. It is possible that the antizyme enhances the degradation of the enzyme protein. Control experiments demonstrated that the antiserum used would have detected any inactive antizyme-ornithine decarboxylase complexes present in liver since addition of antizyme to ornithine decarboxylase in vitro did not affect the amount of ornithine decarboxylase detected in our radioimmunoassay. Anti-(ornithine decarboxylase) antibodies may be useful in the purification of antizyme since the antizyme-ornithine decarboxylase complex can be immunoprecipitated, and antizyme released from the precipitate with 0.3 M-NaCl.  相似文献   

17.
L Persson  J E Seely  A E Pegg 《Biochemistry》1984,23(16):3777-3783
An immunoblotting technique was used to study the forms of ornithine decarboxylase present in androgen-induced mouse kidney. Two forms were detected which differed slightly in isoelectric point but not in subunit molecular weight (approximately 55 000). Both forms were enzymatically active and could be labeled by reaction with radioactive alpha-(difluoromethyl)-ornithine, an enzyme-activated irreversible inhibitor. On storage of crude kidney homogenates or partially purified preparations of ornithine decarboxylase, the enzyme protein was degraded to a smaller size (Mr approximately 53 000) without substantial loss of enzyme activity. The synthesis and degradation of ornithine decarboxylase protein were studied by labeling the protein by intraperitoneal injection of [35S]methionine and immunoprecipitation using both monoclonal and polyclonal antibodies. The fraction of total protein synthesis represented by renal ornithine decarboxylase was increased at least 25-fold by testosterone treatment of female mice and was found to be about 1.1% in the fully induced androgen-treated female. Both forms of the enzyme were rapidly labeled in vivo, and the immunoprecipitable ornithine decarboxylase protein was almost completely lost after 4-h exposure to cycloheximide, confirming directly the very rapid turnover of this enzyme. Treatment with 1,3-diaminopropane which is known to cause a great reduction in ornithine decarboxylase activity did not greatly selectively inhibit the synthesis of the enzyme. However, 1,3-diaminopropane did produce an increase in the rate of degradation of ornithine decarboxylase and a general reduction in protein synthesis. These two factors, therefore, appear to be responsible for the loss of ornithine decarboxylase activity and protein in response to 1,3-diaminopropane.  相似文献   

18.
Casein kinase II and ornithine decarboxylase were purified from a virally-transformed macrophage-like cell line, RAW264. The addition of casein kinase II to a reaction mixture containing [tau-32P]GTP, Mg++, and ornithine decarboxylase led to the phosphorylation of a 55,000 dalton protein band in the purified preparation of ornithine decarboxylase. Stoichiometric estimates indicated that casein kinase II incorporated 0.15 mole of phosphate per mole of ornithine decarboxylase, which was increased to 0.3 mole/per mole in the presence of spermine. The apparent Km and Vmax values for the casein kinase II-mediated phosphorylation of ornithine decarboxylase were 0.36 microM and 62.5 nmol/min./mg kinase. The addition of spermine to the reaction did not alter the Km but increased the Vmax to 100 nmol/min./mg kinase. The phosphorylation of ornithine decarboxylase by casein kinase II affected neither the rate of maximal ornithine decarboxylase activity nor the affinity of the enzyme for ornithine.  相似文献   

19.
We have recently isolated, without using any inhibitors, a mutant of Chinese hamster ovary cell line which greatly overproduces ornithine decarboxylase in serum-free culture. Addition of polyamines (putrescine, spermidine, or spermine, 10 microM) or ornithine (1 mM), the precursor of polyamines, to the culture medium of these cells caused a rapid and extensive decay of ornithine decarboxylase activity. At the same time the activity of S-adenosylmethionine decarboxylase showed a less pronounced decrease. Notably, the polyamine concentrations used were optimal for growth of the cells and caused no perturbation of general protein synthesis. Spermidine and spermine appeared to be the principal regulatory amines for both enzymes, but also putrescine, if accumulated at high levels in the cells, was capable of suppressing ornithine decarboxylase activity. The amount of ornithine decarboxylase protein (as measured by radioimmunoassay) declined somewhat more slowly than the enzyme activity, but no more than 10% of the loss of activity could be ascribed to post-translational modifications or inhibitor interaction. Some evidence for inactivation through ornithine decarboxylase-antizyme complex formation was obtained. Gel electrophoretic determinations of the [35S]methionine-labeled ornithine decarboxylase revealed a rapid reduction in the synthesis and acceleration in the degradation of the enzyme after polyamine additions. No decrease in the amounts of the two ornithine decarboxylase-mRNA species, hybridizable to a specific cDNA, was detected, suggesting that polyamines depressed ornithine decarboxylase synthesis by selectively inhibiting translation of the message.  相似文献   

20.
Ornithine decarboxylase isolated from HTC cells was separated into two distinct charged states by salt-gradient elution from DEAE-Sepharose columns. This charge difference between the enzyme forms was maintained in partially purified preparations, but enzyme form II was observed to change to form I in a time-dependent polyamine-stimulated fashion in crude cell homogenates. The enzyme modification that produces this charge diversity between the alternative enzyme states was further investigated for its role in enzyme activity induction, protein stability and rapid turnover. Inhibition of new protein synthesis by cycloheximide resulted in a much more rapid loss of form I enzyme than of form II, suggesting that during normal enzyme turnover the latter enzyme state may be derived from the former. Culture conditions that favour the stabilization of this usually labile enzyme generally induced an increased proportion of the enzyme in the form II charge state. In particular, inhibitors of synthesis of spermidine and spermine induced the stabilization of cellular ornithine decarboxylase and promoted a marked accumulation in form II. Conversely, polyamines added to the cells in culture induced a very rapid loss in both forms of the enzyme, an effect that could not be attributed merely to an inhibition of new enzyme synthesis. It appears that the polyamines, but not putrescine, may be an essential part of the rapid ornithine decarboxylase inactivation process and that they may function in part by stimulating the conversion of the more stable enzyme form II into the less stable enzyme state, form I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号