首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reintroductions of the boll weevil, Anthonomus grandis grandis Boheman, into areas of the United States where it has been eradicated or suppressed are very expensive to mitigate. There is concern that a cotton gin in an eradication zone may serve as a site of boll weevil reintroductions when processing cotton harvested in a neighboring infested zone. Similarly, there is a question whether weevil-free areas can safely import gin products, such as cottonseed and baled lint, from infested areas without risking an introduction. Many countries require fumigation of imported U.S. cotton bales to protect against boll weevil introductions, costing the U.S. cotton industry millions of dollars annually. In previously reported experiments, we quantified the potential for boll weevils to survive passage through precleaning machinery in the gin. In this study, we quantified survival potential of boll weevils passing through the gin stand and segregating into the cottonseed, mote, or lint fractions. We also examined boll weevil survival when passed with ginned lint through a lint cleaner. We present a flow chart of experimentally determined survival potentials of boll weevils passing through the various subprocesses of the gin, from which one can calculate the risk of a live boll weevil reaching any point in the process. Our data show that there is virtually no chance of a boll weevil being segregated alive into the cottonseed or of one surviving in the lint to approach the bale press. Therefore, quarantine or fumigation of cottonseed and cotton bales to guard against boll weevil introductions is unnecessary.  相似文献   

2.
The study was conducted in the northern Texas Rolling Plains in 1999 to define the relationship between number of cotton aphids, Aphis gossypii Glover, and resulting contamination of cotton lint by honeydew. Whole-plot treatments were three furrow irrigation management treatments: cotton grown without supplemental irrigation (dryland), irrigated cotton with last irrigation in mid August, and irrigated cotton with last irrigation in late August. Subplots within each irrigation treatment included an untreated check, a plot treated with lambda-cyhalothrin to stimulate aphid population increase, a plot treated with lambda-cyhalothrin followed by pymetrozine after aphids began to increase, and a plot treated with lambda-cyhalothrin followed by thiamethoxam after aphids began to increase. Cotton aphids were counted on leaves picked from the top and bottom half of the plant. Cotton lint was analyzed for contamination by glucose, fructose, sucrose, and melezitose secreted by cotton aphids, and percentage leaf moisture and nitrogen and leaf sucrose concentrations were determined. The manual sticky cotton thermodetector was used to determine degree of lint stickinesss. There was a significant relationship between thermodetector counts and melezitose contamination on lint, and a melezitose concentration of 90.9 microg/g of lint was associated with a thermodetector count of 10, the threshold for sticky lint problems in textile mills. An equation was developed to estimate melezitose concentration on lint as a function of average numbers of aphids per leaf and the interaction between percentage leaf moisture and nitrogen. The number of aphids per leaf associated with a melezitose concentration of 90.9 microg/g of lint ranged from 11.1 to 50.1, depending on percentage leaf moisture and nitrogen. The threshold for sticky lint problems occurred when aphid numbers ranged between 11.1 and 50.1 per leaf after bolls open.  相似文献   

3.
4.
5.
6.
Variations in moisture and substrate in preharvest corn kernels and cottonseed were linked with the ability of Aspergillus parasiticus to infect the seed and produce aflatoxin. Osmotic pressures and moisture content (MC) levels of developing starch-rich corn kernels and lipid-rich cottonseed were determined. For in vivo studies, corn kernels and cottonseed were inoculated with A. parasiticus conidia and retained on plants through maturation. For in vitro studies, samples of corn kernels and cottonseed were collected at various stages, sterilized, inoculated, incubated for 2 weeks, and assayed for toxin. Aflatoxin levels were highest in corn kernels inoculated at 28 days postflowering (52% MC) in both the in vivo and in vitro tests. Toxin concentrations in cottonseed were greatest with inoculation at 35 days postflowering (70% MC) in seed retained on the plant, but toxin accumulation continued to increase with the maturity of the seed inoculated in cottonseed used in the in vitro trials. Moisture and substrate conditions in the midrange of seed development provided optimum conditions for fungal development and toxin production in seed retained on the plant.  相似文献   

7.
Variations in moisture and substrate in preharvest corn kernels and cottonseed were linked with the ability of Aspergillus parasiticus to infect the seed and produce aflatoxin. Osmotic pressures and moisture content (MC) levels of developing starch-rich corn kernels and lipid-rich cottonseed were determined. For in vivo studies, corn kernels and cottonseed were inoculated with A. parasiticus conidia and retained on plants through maturation. For in vitro studies, samples of corn kernels and cottonseed were collected at various stages, sterilized, inoculated, incubated for 2 weeks, and assayed for toxin. Aflatoxin levels were highest in corn kernels inoculated at 28 days postflowering (52% MC) in both the in vivo and in vitro tests. Toxin concentrations in cottonseed were greatest with inoculation at 35 days postflowering (70% MC) in seed retained on the plant, but toxin accumulation continued to increase with the maturity of the seed inoculated in cottonseed used in the in vitro trials. Moisture and substrate conditions in the midrange of seed development provided optimum conditions for fungal development and toxin production in seed retained on the plant.  相似文献   

8.
Lint percentage is an important character of cotton yield components and it is also correlated with cotton fibre development. In this study, we used a high lint percentage variety, Baimian1, and a low lint percentage, TM-1 genetic standard for Gossypium hirsutum, as parents to construct a mapping populations in upland cotton (G. hirsutum). A quantitative trait locus/loci (QTL) analysis of lint percentage was performed by using two mapping procedures; composite interval mapping (CIM), inclusive composite interval mapping (ICIM) and the F2:3 populations in 2 years. Six main-effect QTL (M-QTL) for lint percentage (four significant and two suggestive) were detected in both years by CIM, and were located on chr. 3, chr. 19, chr. 26 and chr. 5/chr. 19. Of the six QTL, marker intervals and favourable gene sources of the significant M-QTL, qLP-3(2010) and qLP-3(2011) were consistent. These QTL were also detected by ICIM, and therefore, should preferentially be used for marker-assisted selection (MAS) of lint percentage. Another M-QTL, qLP-19(2010), was detected by two mapping procedures, and it could also be a candidate for MAS. We detected the interaction between two M-QTL and environment, and 11 epistatic QTL (E-QTL) and their interaction with environment by using ICIM. The study also found two EST-SSRs, NAU1187 and NAU1255, linked to M-QTL for lint percentage that could be candidate markers affecting cotton fibre development.  相似文献   

9.

Background  

Pre-harvest infection of peanuts by Aspergillus flavus and subsequent aflatoxin contamination is one of the food safety factors that most severely impair peanut productivity and human and animal health, especially in arid and semi-arid tropical areas. Some peanut cultivars with natural pre-harvest resistance to aflatoxin contamination have been identified through field screening. However, little is known about the resistance mechanism, which has slowed the incorporation of resistance into cultivars with commercially acceptable genetic background. Therefore, it is necessary to identify resistance-associated proteins, and then to recognize candidate resistance genes potentially underlying the resistance mechanism.  相似文献   

10.
11.
Fitness costs associated with insect resistance to transgenic crops producing toxins from Bacillus thuringiensis (Bt) reduce the fitness on non-Bt refuge plants of resistant individuals relative to susceptible individuals. Because costs may vary among host plants, choosing refuge cultivars that increase the dominance or magnitude of costs could help to delay resistance. Specifically, cultivars with high concentrations of toxic phytochemicals could magnify costs. To test this hypothesis, we compared life history traits of three independent sets of pink bollworm, Pectinophora gossypiella (Saunders), populations on two cotton cultivars that differed in antibiosis against this cotton pest. Each set had an unselected susceptible population, a resistant population derived by selection from the susceptible population, and the F1 progeny of the susceptible and resistant populations. Confirming previous findings with pink bollworm feeding on cotton, costs primarily affected survival and were recessive on both cultivars. The magnitude of the survival cost did not differ between cultivars. Although the experimental results did not reveal differences between cultivars in the magnitude or dominance of costs, modeling results suggest that differences between cultivars in pink bollworm survival could affect resistance evolution. Thus, knowledge of the interaction between host plants and fitness costs associated with resistance to Bt crops could be helpful in guiding the choice of refuge cultivars.  相似文献   

12.
13.
Fitness costs associated with resistance to transgenic crops producing toxins from Bacillus thuringiensis (Bt) may have important effects on the evolution of resistance. We investigated overwintering costs in pink bollworm, Pectinophora gosypiella (Saunders), strains with different degrees of resistance to Bt cotton. Frequency of resistant individuals in a strain was not associated with induction of diapause or emergence from diapause in early winter. Emergence from diapause in the spring was 71% lower in three highly resistant strains than in two heterogeneous strains from which the resistant strains were derived. This underestimates the overwintering cost because the frequency of the resistance allele was relatively high in the heterogeneous strains. Emergence in the spring in hybrid progeny from crosses between the resistant and heterogeneous strains was greater than in resistant strains but did not differ from susceptible strains, showing that the overwintering cost was recessive to some extent.  相似文献   

14.
Cotton, Gossypium hirsutum L., bolls from 17 field locations in northeastern North Carolina and southeastern Virginia, having 20% or greater internal boll damage, were studied to determine the relationship between external feeding symptoms and internal damage caused by stink bug (Hemiptera: Pentatomidae) feeding. In 2006 and 2007, two cohorts of 100 bolls each were sampled at all field locations. The first cohort was removed as bolls reached approximately quarter size in diameter (2.4 cm). External and internal symptoms of stink bug feeding were assessed and tabulated. Concurrent to when the first cohort was collected, a second cohort of quarter-size-diameter bolls was identified, tagged, examined in situ for external feeding symptoms (sunken lesions), and harvested at the black seed coat stage. Harvested bolls were assessed for internal damage and locks were categorized (undamaged, minor damage, or major damage), dried, and ginned. Lint samples from each damage category were submitted for high volume instrument and advanced fiber information system quality analyses. Significant, moderately strong Pearson correlation coefficients existed between number of external stink bug feeding lesions and internal damage. Pearson correlation of total external lesions with total internal damage was stronger than any correlation among the other single components compared. Predictability plots indicated a rapid increase in relationship strength when relating external stink bug lesions to internal damage as the number of external lesions increased. Approximately 90% predictability of internal damage was achieved with four (2006) or six (2007) external lesions per boll. Gin-turnout and fiber quality decreased with increasing intensity of internal stink bug damage.  相似文献   

15.
Mora  Miguel  Lacey  John 《Mycopathologia》1997,138(2):77-89
Projects funded by International Development Research Centre (IDRC) of Canada and the European Commission have enabled the examination of more than 3000 samples of maize collected from all regions of Costa Rica at different stages, from the growing crop through storage to final sale, and at different water contents. Contamination with Aspergillus flavus was frequent and about 80% of samples contained more than 20 ng aflatoxins g-1 grain. Average contamination with aflatoxins in the Brunca Region was > 274 ng g -1 while that in other regions was < 70 ng g -1. Except in Brunca region, where it averaged 376 ng g -1, contamination of grain from commercial sources was slightly less than of that from farms (≤15 ng g-1). It appeared that samples kept on the cob after harvest contained almost no aflatoxin while shelled samples were frequently highly contaminated. Experiments were therefore done in Brunca and Huetar Atlantic Regions, utilising 34 experimental maize crops to study in detail the development of A. flavus and aflatoxin from before harvest, through postharvest treatment before drying and through storage for six months. A. flavus was isolated more frequently from maize shelled immediately after harvest than from that kept on the cob until it could be dried, and from more samples from the Brunca Region than from the Huetar Atlantic Region. Samples harvested with ≥18% water content often contained >70% of grains infected with A. flavus but sometimes there were few grains infected. As found in the initial survey, more aflatoxin contamination developed in shelled maize than in that handled on the cob during the period from harvesting to drying, especially if the delay was more than 5 days, and more in Brunca than in Huetar. Shelled grain contained 400–800 ng aflatoxin g -1 in Brunca but <100 ng g-1 in Huetar while grain kept on the cob contained <30 ng g-1, even with >18% water content. Incidence of Fusarium spp. exceeded 50% except where A. flavus colonized more than 80% of grains. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
The antagonistic activity of Bacillus subtilis strain G1 was tested against various isolates of Aspergillus flavus in vitro. A talc-based powder formulation of B. subtilis strain G1 was prepared and evaluated to control A. flavus infection and aflatoxin B1 contamination in groundnut under greenhouse and field conditions. The results showed that B. subtilis strain G1 could inhibit the growth of all isolates of A. flavus tested in dual culture assay and the growth inhibition ranged from 93 to 100%. Results of greenhouse and field experiments indicated that B. subtilis strain G1 when applied to groundnut as seed treatment and soil application significantly suppressed A. flavus population in the soil, A. flavus infection and aflatoxin B1 content in kernels and increased the pod yield. These studies show that B. subtilis strain G1 has potential as a biocontrol agent for control of aflatoxin contamination in groundnut.  相似文献   

17.
18.
19.
Aflatoxin-lysine (AFB1-lys) adduct levels in blood samples collected from 230 individuals living in three districts of Malawi (Kasungu, Mchinji, and Nkhotakota) and aflatoxin B1 (AFB1) levels in groundnut and maize samples collected from their respective homesteads were determined using indirect competitive enzyme-linked immunosorbent assay (IC-ELISA) methods. AFB1-lys adducts were detected in 67% of blood samples, with a mean concentration of 20.5?±?23.4 pg/mg of albumin. AFB1 was detected in 91% of groundnut samples and in 70% of maize samples, with mean AFB1 levels of 52.4 and 16.3 μg/kg, respectively. All participants of this study reported consuming maize on a daily basis and consuming groundnuts regularly (mean consumption frequency per week: 3.2?±?1.7). According to regression analysis, a frequency of groundnut consumption of more than four times per week, being female, and being a farmer were significant (p?<?0.05) contributors to elevated AFB1-lys adduct levels in the blood. This is the first report on AFB1-lys adducts in blood samples of residents in Malawi. The results reinforce the urgent need for interventions, aiming at a reduction of aflatoxin exposure of the population.  相似文献   

20.
Aflatoxins are potent carcinogens produced by some Aspergillus spp. Infection of peanut (Arachis hypogaea) by root-knot nematodes (Meloidogyne arenaria) can lead to an increase in aflatoxin contamination of kernels when the plants are subjected to drought stress during pod maturation. It is not clear whether the increased aflatoxin contamination is primarily due to greater invasion of the galled pods by toxigenic Aspergillus spp. or whether root galling is also involved. Our objective was to determine the contribution of root and pod galling caused by root-knot nematodes to the increase in aflatoxin contamination in peanut. Two greenhouse experiments were conducted in which pods and roots were physically separated. Pod set was restricted to soil-filled pans (41 cm dia. x 10 cm depth), while the roots grew underneath the pan into a pot. The experiments had a factorial arrangement of treatments: pod zone with and without nematodes, and root zone with and without nematodes. In Experiment 1, 5000 eggs of M. arenaria were added to the root zone14 days after planting (DAP) and 8000 eggs were added to the pod zone 60 and 80 DAP. In Experiment 2, 3000 eggs were added to the root zone 30 DAP and 8000 eggs were added to the pod zone every week starting 60 DAP. The four treatment combinations were replicated 10 to 13 times. Conidia of Aspergillus flavus/A. parasiticus was added to the soil surface (pods zone) at mid bloom. Plants were subjected to drought stress 40 days before harvest. In Experiment 1, adding nematodes to the pod zone had no effect on aflatoxin concentrations in the peanut kernel. However, the lack of an effect may have been to due to the low occurrence of galling on the hulls. In pots where nematodes were added to the root zone, 50 to 80% of the root system was galled. Adding nematodes to the root zone increased aflatoxin concentrations in the peanut kernels from 34 ppb in the control to 71 ppb. In Experiment 2, there was heavy pod galling with galls present on 53% of the pods. Adding nematodes to the pod zone increased aflatoxin concentrations in the kernels from 19 ppb in the control to 572 ppb. Based on the results of the two experiments, it appears that infection of either the roots or pods by M. arenaria can lead to greater aflatoxin contamination of peanut kernels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号