首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulphate uptake and xylem loading of young pea (Pisum sativum L.) seedlings   总被引:3,自引:0,他引:3  
Herschbach  C.  Pilch  B.  Tausz  M.  Rennenberg  H.  Grill  D. 《Plant and Soil》2002,238(2):227-233
Sulphate uptake and xylem loading was analysed in young pea (Pisum sativum) seedlings. The rate of sulphate uptake into intact 8-days-old pea seedlings (determined by a 1 h exposure to radiolabelled sulphate in the nutrient solution) was 585 nmol sulphate g–1 root fresh weight h–1. When the cotyledons were removed on day 6 the 8-days-old seedlings took up only 7% of the controls. Interruption of the phloem transport by steam girdling of the stem or the root (1 h before incubation with radiolabelled sulphate) diminished sulphate uptake by approximately 50%. The addition of sucrose to the nutrient solution during incubation did not restore sulphate uptake rates indicating that the decrease was not due to a lack of energy. Apparently, a signal from the shoot and/or the cotyledons is necessary to stimulate sulphate uptake into the roots of pea seedlings. Glutathione fed to the roots for 3 h prior to incubation with radiolabelled sulphate diminished sulphate uptake by approximately 50%. The relative proportion of the sulphate taken up that was loaded into the xylem remained unchanged (between 7 and 9% of total uptake), even when the stem was girdled above the cotyledons or when the seedlings were pre-exposed to glutathione. Only removal of the cotyledons or girdling of the root below the cotyledons increased the proportion of sulphate loaded into the xylem to 13–15% of total uptake upon exposure to glutathione. Apparently, a signal from the cotyledons represses xylem loading to some extent.  相似文献   

2.
Summary Three isoenzyme systems (amylase, esterase and glutamate oxaloacetate transaminase) were examined in seeds of pea (Pisum sativum L.) and shown to give clear variation in their band patterns on gel electrophoresis between different lines. The inheritance of these isoenzyme systems, and the location of their genes on the pea genome was investigated. Reciprocal crosses were made between lines, F2 seeds were analysed for segregation in the band patterns of the isoenzymes, and F2 plants were investigated to find linkage between the genes for these isoenzymes and genes for selected morphological markers. The results obtained showed that each of the investigated isoenzyme systems is genetically controlled by co-dominant alleles at a single locus. The gene for amylase was found to be on chromosome 2, linked to the loci k and wb (wb ... 9 ... k ... 25 ... Amy). The gene for esterase was found to be linked with the gene Br (chromosome 4) but the exact location is uncertain because of the lack of the morphological markers involved in the cross. The gene for glutamate oxaloacetate transaminase was found to be on chromosome 1 and linked with the loci a and d (a... 24... Got... 41 ... d).  相似文献   

3.
Although it has been suggested that the maximum axial growth pressure of roots is temperature-dependent, this has not previously been tested experimentally. In this paper we report the temperature-dependence of the maximum axial growth pressure of completely mechanically-impeded roots of pea (Pisum sativum L. cv Meteor). Maximum growth pressures were somewhat lower at 15 and 20°C than at 10, 25 or 30°C, but there was no overall trend for maximum growth pressure to increase or decrease with temperature. Turgor pressure in unimpeded roots varied little with temperature and we suggest that cell wall tension in completely impeded roots also varies little with temperature.  相似文献   

4.
Summary Clathrin-coated vesicles have been isolated from cotyledons of both developing and germinating pea seeds using differential centrifugation, ribonuclease treatment, discontinuous sucrose gradients, and isopycnic centrifugation on a linear D2O-Ficoll gradient. The yield of coated vesicles from developing pea cotyledons was exceptional, being 1.6 × higher than the yield from hog and bovine brain, 5.3 × higher than the yield from carrot suspension cultures, and 13 × the yield from cotyledons of germinating pea seeds. The pea coated vesicles are similar to other plant coated vesicles in size (approximately 80 nm in diameter) and in having a clathrin heavy chain of 190,000 Mr. The lipid phosphorus to protein ratio, 190–250 nmol P per mg protein, of the coated vesicles from plants is comparable to that reported for highly purified coated vesicles from animals. The nondenatured pea clathrin reacted weakly with an antiserum to bovine brain clathrin, but pea clathrin denatured by sodium dodecyl sulfate did not.Abbreviations CLC Clathrin light chain - CHC clathrin heavy chain - CV coated vesicle - DTT dithiothreitol - EGTA ethyleneglycol-bis-(-aminoethyl ether) N,N-tetraacetic acid - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - TBS Tris buffered saline  相似文献   

5.
Factors influencing the efficiency of Agrobacterium-mediated transformation of pea were tested using highly efficient, direct regeneration system. The virulence of three Agrobacterium strains (octopine LBA 4404, nopaline C58C1 and succinamopine, hypervirulent EHA 105) clearly varied giving 1 transgenic plant per 100 explants for LBA 4404, 2.2 for C58C1 and 8.2 for EHA 105. To test the efficacy of selection agents we used the hypervirulent EHA 105 strain carrying pGPTV binary vector with one of four different selection genes: nptII, hpt, dhfr or bar. The mean number of transgenic, kanamycin-resistant plants for two cultivars tested was 4.2 per 100 explants and was slightly higher than the number of phosphinothricin-resistant plants (3.6 plants per 100 explants). The proportion of transgenics among kanamycin-selected plants was also higher than among phosphinothricin-resistant plants (35% and 28% respectively). There was no regeneration on hygromycin or methotrexate media (transformation with hpt and dhfr genes). Acetosyringone had no apparent influence on efficiency of transformation with hypervirulent EHA 105 strain, however it did affect the rate of transformation when moderately virulent C58C1 was used. Recovery of transgenic plants was enhanced after application of 5-azacytidine. The presence of integrated T-DNA was checked by PCR and confirmed by Southern hybridization. T-DNA was stably transmitted to the next generation.  相似文献   

6.
Cell suspension cultures were established from germinating pea (Pisum sativum L.) seeds. This cell culture, which accumulated pisatin, consisted mostly of single cells containing a few cell aggregates. The cells responded to treatment with a yeast glucan preparation with transient accumulation of pisatin in both cells and culture media. Addition of pisatin to cell cultures resulted in increased synthesis of pisatin. Phenylalanine ammonia-lyase, chalcone synthase and isoflavone reductase activities were present in untreated cells. Upon treatment with an elicitor preparation the activities of the first two enzymes showed a rapid, transient increase up to 20 hours after treatment. Isoflavone reductase showed a major and minor peak at 16 and 36 h, respectively, after elicitor treatment. The time course of the enzyme activity and pisatin accumulation is consistent with an elicitor-mediated response.Abbreviations CHS chalcone synthase - 2,4-D 2,4-dichlorophenoxyacetic acid - IBA indole-3-butyric acid - IFR isoflavone reductase - 2iP 6-(dimethylallylamino)-purine - MS Murashige & Skoog basal salt medium - PAL phenylalanine ammonia-lyase - PMSF phenylmethylsulfonyl fluoride - POPOP 1,4-bis-2-(4-methyl-5-phenyloxazolyl)-benzene - PPO 2,5-diphenyloxazole  相似文献   

7.
Summary The aim of this study was to determine whether DNA variations could be detected in regenerated pea plants. Two different genotypes were analyzed by cytogenetic and molecular techniques: the Dolce Provenza cultivar and the 5075 experimental line. Dolce Provenza regenerated plants showed a reduction in DNA content, particularly at the level of unique sequences and ribosomal genes. Moreover, regeneration was associated with an increase in DNA methylation of both internal and external cytosines of the CCG sequence. On the other hand, the DNA content of the 5075 line remained stable after regeneration. DNA reduction was found only in 5075 plants regenerated from callus cultures maintained for long incubation periods (about a year). The DNA variations observed are discussed both in relation to the genotype source and the role of tissue-culture stress.  相似文献   

8.
L. Natali  A. Cavallini 《Protoplasma》1987,141(2-3):121-125
Summary The chromosomal status of calli and plantlets regenerated fromPisum sativum shoot apical meristems was studied. Chromosome mosaicism (aneusomaty) occurs during callus induction and proliferation, mostly owing to nuclear fragmentation prior to mitosis in the first days of culture. Plantlets regenerated from calli are diploid or aneusomatic, but a selective advantage of diploid cells (diplontic selection) takes place with plantlet growth. The results are discussed in relation to the possibility of inducing chromosomal and/or genetic variability by using meristematic tissues as expiants.  相似文献   

9.
Summary Radiotracer studies revealed that the mechanism of zinc uptake was not purely non-metabolic. The over all uptake of Zn by intact plant ofPisum sativum L. (Var. T-163) occurred through an initial nonmetabolic phase followed by a metabolically mediated absorption. The translocation of zinc from plant roots to shoot was more sensitive to metabolic inhibitors and thus was a metabolic function.Research Publication No. 1541/116/0 through Experiment Station, G. B. Pant University, Pantnagar-263145, India.  相似文献   

10.
Summary A rapid regeneration system was used for studies ofAgrobacterium-mediated transformation inPisum sativum L. Cotyledonary node explants were inoculated withAgrobacterium tumefaciens strains containing binary vectors carrying genes for nopaline synthase (NOS),β-glucuronidase (GUS), and neomycin phosphotransferase (NPTII) and placed on selection medium containing either 75 or 150 mg/liter kanamycin. A GUS encoding gene (uidA) containing an intron was used to monitor gene expression from 6 to 21 days postinoculation. GUS activity could be observed 6 days after inoculation in the area of the explant in which regeneration-occurred. Regenerating tissue containing transformed cells was observed in explants on selection medium 21 days postinoculation. Using this system, a single transgenic plant was obtained. Progeny of this plant, which contained two T-DNA inserts, demonstrated segregation for the inserts and for expression of the NOS gene in the selfed R1 progeny. NPTII activity was observed in the R2 generation, indicating inheritance and expression of the foreign DNA over at least two generations. Attempts to repeat this procedure were unsuccessful.  相似文献   

11.
Dehydrins are a family of proteins characterised by conserved amino acid motifs, and induced in plants by dehydration or treatment with ABA. An antiserum was raised against a synthetic oligopeptide based on the most highly conserved dehydrin amino acid motif, the lysine-rich block (core sequence KIKEK-LPG). This antiserum detected a novel M r 40 000 polypeptide and enabled isolation of a corresponding cDNA clone, pPsB61 (B61). The deduced amino acid sequence contained two lysine-rich blocks, however the remainder of the sequence differed markedly from other pea dehydrins. Surprisingly, the sequence contained a stretch of serine residues, a characteristic common to dehydrins from many plant species but which is missing in pea dehydrin.The expression patterns of B61 mRNA and polypeptide were distinctively different from those of the pea dehydrins during seed development, germination and in young seedlings exposed to dehydration stress or treated with ABA. In particular, dehydration stress led to slightly reduced levels of B61 RNA, and ABA application to young seedlings had no marked effect on its abundance.The M r 40 000 polypeptide is thus related to pea dehydrin by the presence of the most highly conserved amino acid sequence motifs, but lacks the characteristic expression pattern of dehydrin. By analogy with heat shock cognate proteins we refer to this protein as a dehydrin cognate.  相似文献   

12.
Quantitative trait loci (QTLs) affecting seed weight in pea (Pisum sativum L.) were mapped using two populations, a field-grown F2 progeny of a cross between two cultivated types (Primo and OSU442-15) and glasshouse-grown single-seed-descent recombinant inbred lines (RILs) from a wide cross between a P. sativum ssp. sativum line (Slow) and a P. sativum ssp. humile accession (JI1794). Linkage maps for these crosses consisted of 199 and 235 markers, respectively. QTLs for seed weight in the Primo x OSU442-15 cross were identified by interval mapping, bulked segregant analysis, and selective genotyping. Four QTLs were identified in this cross, demonstrating linkage to four intervals on three linkage groups. QTLs for seed weight in the JI1794 x Slow cross were identified by single-marker analyses. Linkage were demonstrated to four intervals on three linkage groups plus three unlinked loci. In the two crosses, only one common genomic region was identified as containing seed-weight QTLs. Seed-weight QTLs mapped to the same region of linkage group III in both crosses. Conserved linkage relationships were demonstrated for pea, mungbean (Vigna radiata L.), and cowpea (V. unguiculata L.) genomic regions containing seed-weight QTLs by mapping RFLP loci from the Vigna maps in the Primo x OSU442-15 and JI1794 x Slow crosses.  相似文献   

13.
E. Jacobsen 《Plant and Soil》1984,82(3):427-438
Summary In pea (Pisum sativum L.), mutants could be induced, modified in the symbiotic interaction withRhizobium leguminosarum. Among 250 M2-families, two nodulation resistant mutants (K5 and K9) were obtained. In mutant K5 the nodulation resistance was monogenic recessive and not Rhizobium strain specific. Out of 220 M2-families one mutant nod3 was found which could form nodules at high nitrate concentrations (15 mM KNO3). This mutant nodulated abundantly with severalRhizobium strains, both in the absence and presence of nitrate. Probably as the result of a pleiotropic effect, its root morphology was also changed. Among 1800 M2-families, five nitrate reductase deficient mutants were obtained and one of them (mutant E1) was used to study the inhibitory effect of nitrate on nodulation and nitrogen fixation.The results of the present investigation show that pea mutants which are modified in their symbiosis withRhizobium leguminosarum, can readily be obtained. The significance of such mutants for fundamental studies of the legume-Rhizobium symbiosis and for applications in plant breeding is discussed.  相似文献   

14.
A reliable Agrobacterium tumefaciens-mediated transformation method has been developed for peas (Pisum sativum) using immature cotyledons as the explant source. Transgenic plants were recovered from the four cultivars tested: Bolero, Trounce, Bohatyr and Huka. The method takes approximately 7 months from explant to seed-bearing primary regenerant. The binary vector used carried genes for kanamycin and phosphinothricin resistance. Transformed pea plants were selected on 10 mg/l phosphinothricin. The nptII and bar genes were shown to be stably inherited through the first sexual generation of transformed plants. Expression of the phosphinothricin-resistance gene in the transformed plants was demonstrated using the Buster (=Basta) leaf-paint test and the phosphinothricin acetyl transferase enzyme assay.Abbreviations BA 6-benzylaminopurine  相似文献   

15.
The influence of soil nitrate availability, crop growth rate and phenology on the activity of symbiotic nitrogen fixation (SNF) during the growth cycle of pea (Pisum sativum cv. Baccara) was investigated in the field under adequate water availability, applying various levels of fertiliser N at the time of sowing. Nitrate availability in the ploughed layer of the soil was shown to inhibit both SNF initiation and activity. Contribution of SNF to total nitrogen uptake (%Ndfa) over the growth cycle could be predicted as a linear function of mineral N content of the ploughed layer at sowing. Nitrate inhibition of SNF was absolute when mineral N at sowing was over 380 kg N ha–1. Symbiotic nitrogen fixation was not initiated unless nitrate availability in the soil dropped below 56 kg N ha–1. However, SNF could no longer be initiated after the beginning of seed filling (BSF). Other linear relationships were established between instantaneous %Ndfa and instantaneous nitrate availability in the ploughed layer of the soil until BSF. Instantaneous %Ndfa decreased linearly with soil nitrate availability and was nil above 48 and 34 kg N ha–1 for the vegetative and reproductive stages, respectively, levels after which no SNF occurred. Moreover, SNF rate was shown to be closely related to the crop growth rate until BSF. The ratio of SNF rate over crop growth rate decreased linearly with thermal time. Maximum SNF rate was about 40 mg N m–2 degree-day–1, equivalent to 7 kg N ha–1, regardless of the N treatment. From BSF to the end of the growth cycle, the high N requirements of the crop were supported by both SNF and nitrate root absorption but, of the two sources, nitrate root absorption seemed to be less affected by the presence of reproductive organs. However, since soil nitrate availability was low at the end of the growth cycle, SNF was the main source of nitrogen acquisition. The onset of SNF decrease at the end of the growth cycle seemed to be first due to nodule age and then associated to the slowing of the crop growth rate.  相似文献   

16.
Cores of repacked soil were consolidated with a compressive strength testing machine, after peas had been planted in the centre of the core. The number that emerged were counted and root and shoot lengths and diameters were measured. Consolidation had no effect on emergence, root length or root diameter of the peas grown in a loamy sand, whereas emergence, root length and root diameter were affected by a small increase in load in a clay loam.  相似文献   

17.
A high-yield method for the isolation of intact nuclei and chromosomes in suspension from a variable number of pea root tips (1–10) has been developed. This procedure is based on a two-step cell-cycle synchronization of root-tip meristems to obtain a high mitotic index, followed by formaldehyde fixation and mechanical isolation of chromosomes and nuclei by homogenization. In the explant, up to 50% of metaphases were induced through a synchronization of the cell cycle at the G1/S interface with hydroxyurea (1.25 mM), followed, after a 3-h release, by a block in metaphase with amiprophos-methyl (10 M). The quality and quantity of nuclei and chromosomes were related to the extent of the fixation. Best results were obtained after a 30-min fixation with 2% and 4% formaldehyde for nuclei and chromosomes, respectively. The method described here allowed the isolation of nuclei and chromosomes, even from a single root tip, with a yield of 1×105/root and 1.4×105/root, respectively. Isolated suspensions were suitable for flow cytometric analysis and sorting and PRINS labelling with a rDNA probe.  相似文献   

18.
We report on the distribution and initial characterization of glucose/mannose-specific isolectins of 4- and 7-d-old pea (Pisum sativum L.) seedlings grown with or without nitrate supply. Particular attention was payed to root lectin, which probably functions as a determinant of host-plant specificity during the infection of pea roots by Rhizobium leguminosarum bv. viciae. A pair of seedling cotyledons yielded 545±49 g of affinity-purified lectin, approx. 25% more lectin than did dry seeds. Shoots and roots of 4-d-old seedlings contained 100-fold less lectin than cotyledons, whereas only traces of lectin could be found in shoots and roots from 7-d-old seedlings. Polypeptides with a subunit structure similar to the precursor of the pea seed lectin could be demonstrated in cotyledons, shoots and roots. Chromatofocusing and isoelectric focusing showed that seed and non-seed isolectin differ in composition. An isolectin with an isoelectric point at pH 7.2 appeared to be a typical pea seed isolectin, whereas an isolectin focusing at pH 6.1 was the major non-seed lectin. The latter isolectin was also found in root cell-wall extracts, detached root hairs and root-surface washings. All non-seed isolectins were cross-reactive with rabbit antiserum raised against the seed isolectin with an isolectric point at pH 6.1. A protein similar to this acidic glucose/mannose-specific seed isolectin possibly represents the major lectin to be encountered by Rhizobium leguminosarum bv. viciae in the pea rhizosphere and at the root surface. Growth of pea seedlings in a nitrate-rich medium neither affected the distribution of isolectins nor their hemagglutination activity; however, the yield of affinity-purified root lectin was significantly reduced whereas shoot lectin yield slightly increased. Agglutination-inhibition tests demonstrated an overall similar sugar-binding specificity for pea seed and non-seed lectin. However root lectin from seedlings grown with or without nitrate supplement, and shoot lectin from nitrate-supplied seedlings showed a slightly different spectrum of sugar binding. The absorption spectra obtained by circular dichroism of seed and root lectin in the presence of a hapten also differed. These data indicate that nutritional conditions may affect the sugar-binding activity of non-seed isolectin, and that despite their similarities, seed and non-seed isolectins have different properties that may reflect tissue-specialization.Abbreviations IEF isoelectric focusing - MW molecular weight - pI isoelectric point - Psl1, Psl2 and Psl3 pea isolectins - SDSPAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis The authors wish to thank Professors L. Kanarek and M. van Poucke for helpful discussions.  相似文献   

19.
Pea (Pisum sativum L.) plants inoculated with Rhizobium leguminosarum bv. viciae effective strain 248 were irrigated with nitrogen-free medium supplemented with 0, 25, 50 or 75 mM NaCl. The inhibitory effect of salinity on the growth of pea plants treated with 25 mM NaCl occurred 6 weeks post inoculation. In case of 75 mM NaCl treatment, the same effect was observed 2 weeks post inoculation. In contrast to investigations described in the literature our results clearly indicated that 25 mM NaCl stimulated nodule formation, however, in contrast to control nodules (the medium without NaCl), the nodules were considerably smaller. Remaining variants of salt treatment reduced plant growth, nodulation, and total nodule volume calculated per plant. Microscopic observations showed that salinity: (1) caused the loss of turgor of the nodule peripheral cells, (2) changed nodule zonation, (3) stimulated infection thread enlargement and expansion, (4) caused disturbances in bacterial release from the infection threads, and (5) induced synthesis of electron dense material (EDM) and its deposition in vacuoles. It was also found that cisternae of RER were involved in the formation of special cytoplasmic compartments responsible for synthesis of EDM. Autofluorescence study revealed that salinity increased accumulation of phenolics in pea nodules, as well.  相似文献   

20.
Using enzymological and immunological methods we have investigated the relationship between chalcone synthase and the A locus, a major gene involved in the control of anthocyanin expression in pea (Pisum sativum L.) flowers. Pea plants containing the dominant allele A usually synthesize anthocyanins in the petal tissue, whereas plants homozygous for the a allele do not produce anthocyanins. We sought to determine whether or not the A locus also controlled the presence or absence of chalcone synthase, the first enzyme of the flavonoid pathway in the flowers of three genetic lines (A, purple-violet flowers; A,am, white flowers with sometimes pink edges; and a, white flowers). Chalcone synthase was found to be present in all three genetic lines by enzyme activity measurement, indirect enzyme-linked immunosorbent assay (ELISA), and Western blotting. Spectroscopic investigations showed that only the genetic lines A and A,am contained anthocyanins and flavonol glycosides, respectively, in the flowers; line a accumulated p-coumaric acid or its derivatives. These data suggest that the A locus in Pisum is not the structural gene for chalcone synthase and it does not appear to regulate the expression of this enzyme.This work was supported by a grant from the Cornell University Biotechnology Program, which is sponsored by the New York State Science and Technology Foundation and a consortium of industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号