首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The fluorescent nucleotide 2',3'-trinitrophenyl-ATP (TNP-ATP) binds at the triphosphate substrate binding site of the large (Klenow) fragment of DNA polymerase I (Pol I) as detected by direct binding studies measuring the increase in fluorescence of this ligand (n = 1.0, KD = 0.07 microM). The enzyme-TNP-ATP complex binds Mg2+ and Mn2+ tightly (KD = 0.05 microM) as measured by an increase in fluorescence on titrating with these metals. The substrate dGTP competitively displaces TNP-ATP from the enzyme (KD = 5.7 microM) de-enhancing the fluorescence. The polymerase reaction is half-maximally inhibited by 0.8 microM TNP-ATP in the presence of dATP (10 microM) as substrate. A region of the amino acid sequence of Pol I (peptide I) consisting of residues 728-777 has been synthesized and found to contain significant secondary structure by CD both in water and 50% methanol/water. In water at 3 degrees C, peptide I binds the substrate analog TNP-ATP (KD = 0.03 microM) with a stoichiometry of 0.2. In 50% methanol at 3 degrees C, peptide I binds TNP-ATP with a higher stoichiometry than in water, consistent with a 1:1 complex, but biphasically (16% of the peptide, KD = 0.09 microM; 84% of the peptide, KD = 5.0 microM), and competitively binds the Pol I substrates dATP, TTP, and dGTP (KD = 230-570 microM). Evidence from size exclusion high performance liquid chromatography suggests that these two forms of the peptide are monomer and dimer, respectively. Significantly, the peptide I-TNP-ATP complex binds duplex DNA, tightly (KD = 0.1-0.5 microM) and stoichiometrically, and single stranded DNA more weakly. The peptide I-duplex DNA complex binds both TNP-ATP (KD = 0.5-1.5 microM) and Pol I substrates (KD = 350-2100 microM) stoichiometrically. In a control experiment, a second peptide, peptide II, based on residues 840-888 of the Pol I sequence, retains secondary structure, as detected by CD, but displays no binding of TNP-ATP. The ability of peptide I, which represents only 8% of the large fragment of Pol I, to bind both substrates and duplex DNA indicates that residues 728-777 constitute a major portion of the substrate binding site of this enzyme.  相似文献   

2.
The substrate specificity of Escherichia coli peptide deformylase was investigated by measuring the efficiency of the enzyme to cleave formyl- peptides of the general formula Fo-Xaa-Yaa-NH2, where Xaa represents a set of 27 natural and unusual amino acids and Yaa corresponds to a set of 19 natural amino acids. Substrates with bulky hydrophobic side-chains at the P1' position were the most efficiently cleaved, with catalytic efficiencies greater by two to five orders of magnitude than those associated with polar or charged amino acid side-chains. Among hydrophobic side-chains, linear alkyl groups were preferred at the P1' position, as compared to aryl-alkyl side-chains. Interestingly, in the linear alkyl substituent series, with the exception of norleucine, deformylase exhibits a preference for the substrate containing Met in the P1' position. Next, the influence in catalysis of the second side-chain was studied after synthesis of 20 compounds of the formula Fo-Nle-Yaa-NH2. Their deformylation rates varied within a range of only one order of magnitude. A 3D model of the interaction of PDF with an inhibitor was then constructed and revealed indeed the occurrence of a deep and hydrophobic S1' pocket as well as the absence of a true S2' pocket. These analyses pointed out a set of possible interactions between deformylase and its substrates, which could be the ground driving substrate specificity. The validity of this enzyme:substrate docking was further probed with the help of a set of site-directed variants of the enzyme. From this, the importance of residues at the bottom of the S1' pocket (Ile128 and Leu125) as well as the hydrogen bond network that the main chain of the substrate makes with the enzyme were revealed. Based on the numerous homologies that deformylase displays with thermolysin and metzincins, a mechanism of enzyme:substrate recognition and hydrolysis could finally be proposed. Specific features of PDF with respect to other members of the enzymes with motif HEXXH are discussed.  相似文献   

3.
N-benzoyl-L-phenylalanyl-L-phenylalanine is an excellent peptide substrate for carboxy-peptidase A; at 30 degrees C and pH 7.5, K(m) is 2.6 x 10(-5) M while k(cat) is 177 s(-1) (k(cat)/K(m) = 6.8 x 10(6) M(-1) s(-1)). Indole-3-acetic acid is a noncompetitive or mixed inhibitor towards the peptide and toward hippuryl-L-phenylalanine; plots of E/V vs [Inhibitor] are linear. N-Benzoyl-L-phenylalanine is a competitive inhibitor of peptide hydrolysis, and plots of E/V vs [Inhibitor] are again linear. One molecule of inhibitor binds per active site, and these inhibitors bind in different sites. At constant peptide substrate concentration and a series of constant concentrations of indole-3-acetic acid, plots of E/V vs the concentration of N-benzoyl-L-phenylalanine are linear and intersect behind the E/V axis and above the [Inhibitor] axis. This shows that both inhibitors can bind simultaneously and that binding of one facilitates the binding of the other (beta = 0.18). Employing the ester substrate hippuryl-DL,beta-phenyllactate, the same type of behavior is observed in the reverse sense; N-benzoyl-L-phenylalanine is a linear noncompetitive inhibitor and indole-3-acetic acid is a linear competitive inhibitor. Again the two inhibitor plot is linear and intersects above the [Inhibitor] axis (beta = 0.12). Previous X-ray crystallographic studies have indicated that indole-3-acetic acid binds in the hydrophobic pocket of the S'(1) site, while N-benzoyl-L-phenylalanine binds in the S(1)-S(2) site. The product complex for hydrolysis of N-benzoyl-L-phenylalanyl-L-phenylalanine (phenylalanine + N-benzoyl-L-phenylalanine) occupies both of these sites. However, the present work shows that the peptide substrate does not bind to the enzyme at pH 7.5 so as to be competitive with indole-3-acetic acid. The binding sites may be formed via conformational changes induced or stabilized by substrate and product binding. Copyright 2000 Academic Press.  相似文献   

4.
We report the synthesis and biological activity of analogues of VRC3375 (N-hydroxy-3-R-butyl-3-[(2-S-(tert-butoxycarbonyl)-pyrrolidin-1-ylcarbonyl]propionamide), an orally active peptide deformylase inhibitor. This study explores the structure-activity relationship of various chelator groups, alpha substituents, P(2)' and P(3)' substituents in order to achieve optimal antibacterial activity with minimal toxicity liability.  相似文献   

5.
In this paper we describe the synthesis and photochemical and biochemical properties of two new photoaffinity probes designed for studies on the structure-function relationship of the sodium D-glucose cotransporter (SGLT1). The two probes are [2(')-iodo-4(')-(3(")-trifluoromethyldiazirinyl)phenoxy]-D-glucopyranoside (TIPDG), a mimic for the phenyl glucopyranoside arbutin which is transported by SGLT1 with a very high affinity, and [(4(')-benzoyl)phenoxy]-D-glucopyranoside (BzG), a model compound for phlorizin, the most potent competitive inhibitor of sugar translocation by SGLT1. Both photoaffinity probes TIPDG (lambda(max)=358 nm) and BzG (lambda(max)=293 nm) can be activated at 350-360 nm, avoiding protein-damaging wavelengths. In inhibitor studies on sodium-dependent D-glucose uptake into rabbit intestinal brush border membrane vesicles TIPDG and BzG showed a fully competitive inhibition with regard to the sugar with respective K(i) values of 22+/-5 microM for TIPDG and 12+/-2 microM for BzG. These K(i) values are comparable to those of their parent compounds arbutin (25+/-6 microM) and phlorizin (8+/-1 microM). To further test the potential of TIPDG and BzG as photoaffinity probes, truncated loop 13 protein, supposed to be part of the substrate recognition site of SGLT1, was exposed to TIPDG and BzG in solution. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis demonstrated that TIPDG and BzG successfully labeled the protein. These preliminary results suggest that both photoaffinity probes are promising tools for the study of the structure-function relationship of SGLT1 and other SGLT1 family transporter proteins.  相似文献   

6.
(1'S*,2'S*)-(+/-)-6-Nor-2',3'-dihydro-4'-deoxo-ABA (2) was designed and synthesized as a candidate lead compound for developing a potent and specific inhibitor of ABA 8'-hydroxylase. This compound acted as an effective competitive inhibitor of the enzyme, with a K(I) value of 0.40microM, without exhibiting ABA activity. However, compound 2 also functioned as an enzyme substrate, making it a short-lived inhibitor. The 8'-difluorinated derivative of 2 (4) was synthesized as a long-lasting alternative. Compound 4 resisted 8'-hydroxylation, but inhibited ABA 8'-hydroxylation as effectively as 2. These results suggest that compound 2 is a useful lead compound for the future design and development of an ideal ABA 8'-hydroxylase inhibitor.  相似文献   

7.
Shikimate kinase (SK) is the fifth enzyme in the shikimate pathway and catalyzes the phosphate transfer from ATP to shikimate in generating shikimate 3-phosphate and ADP. SK has been developed as a promising target for the discovery of antibacterial agents. In this report, two small molecular inhibitors (compound 1, 3-methoxy-4-{[2-({2-methoxy-4-[(4-oxo-2-thioxo-1,3-thiazolidin-5-ylidene)methyl]phenoxy}methyl)benzyl]oxy}benzaldehyde; compound 2, 5-bromo-2-(5-{[1-(3,4-dichlorophenyl)-3,5-dioxo-4-pyrazolidinylidene]methyl}-2-furyl)benzoic acid) against Helicobacter pylori SK (HpSK) were successfully identified with IC(50) values of 5.5+/-1.2 and 6.4+/-0.4 microM, respectively. The inhibition kinetics shows that compound 1 is a noncompetitive inhibitor with respect to both shikimate and MgATP, and compound 2 is a competitive inhibitor toward shikimate and noncompetitive inhibitor with respect to MgATP. The surface plasmon resonance (SPR) technology based analysis reveals that the equilibrium dissociation constants (K(D)s) of compounds 1 and 2 with HpSK enzyme are 4.39 and 3.74 microM, respectively. The molecular modeling and docking of two inhibitors with HpSK reveals that the active site of HpSK is rather roomy and deep, forming an L-shape channel on the surface of the protein, and compound 1 prefers the corner area of L-shape channel, while compound 2 binds the short arm of the channel of SK in the binding interactions. It is expected that our current work might supply useful information for the development of novel SK inhibitors.  相似文献   

8.
T G Chu  M Orlowski 《Biochemistry》1984,23(16):3598-3603
A soluble metalloendopeptidase isolated from rat brain preferentially cleaves bonds in peptides having aromatic residues in the P1 and P2 position. An additional aromatic residue in the P3' position greatly increases the binding affinity of the substrate, suggesting the presence of an extended substrate recognition site in the enzyme, capable of binding a minimum of five amino acid residues [Orlowski, M., Michaud, C., & Chu, T.G. (1983) Eur. J. Biochem. 135, 81-88]. A series of N-carboxymethyl peptide derivatives structurally related to model substrates and containing a carboxylate group capable of coordinating with the active site zinc atom were synthesized and tested as potential inhibitors. One of these inhibitors, N-[1(RS)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate, was found to be a potent competitive inhibitor of the enzyme with a Ki of 1.94 microM. The two diastereomers of this inhibitor were separated by high-pressure liquid chromatography. The more potent diastereomer had a Ki of 0.81 microM. The inhibitory potency of the less active diastereomer was lower by 1 order of magnitude. Decreasing the hydrophobicity of the residue binding the S1 subsite of the enzyme by, for example, replacement of the phenylethyl group with a methyl residue decreased the inhibitory potency by almost 2 orders of magnitude. Deletion of the carboxylate group decreased the inhibitory potency by more than 3 orders of magnitude. Shortening the inhibitor chain by a single alanine residue had a similar effect. Binding of the inhibitor to the enzyme increased its thermal stability.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The kinetics of bovine liver enoyl-CoA hydratase (EC 4.2.1.17) or crotonase with 2-trans-hexadecenoyl-CoA as a substrate were studied because different rates were obtained with two assay methods based on measurements of substrate utilization and product formation, respectively. L-3-Hydroxyhexadecanoyl-CoA, the product of the crotonase-catalyzed hydration of 2-trans-hexadecenoyl-CoA, was found to be a strong competitive inhibitor of the enzyme with a Ki of 0.35 microM. In contrast the short-chain product, L-3-hydroxybutyryl-CoA, is a weak competitive inhibitor with a Ki of 37 microM. L-3-Hydroxyhexadecanoyl-CoA is a much stronger inhibitor of crotonase than are other short-chain and long-chain intermediates of beta-oxidation and crotonase is more severely inhibited by this compound than are all beta-oxidation enzymes tested so far. Determination of true kinetic parameters for the crotonase-catalyzed hydration of long-chain substrates requires the removal of product in a coupled assay. When this was done, the Km for 2-trans-hexadecenoyl-CoA with bovine liver crotonase was found to be only 9 microM. It is suggested that under conditions of restricted beta-oxidation, when 3-hydroxyacyl-CoAs accumulate in mitochondria, the inhibition of crotonase by long-chain 3-hydroxyacyl-CoAs may limit the further degradation of medium-chain and short-chain intermediates of beta-oxidation.  相似文献   

10.
To define the inhibitory requirements of mammalian collagenase, several N-substituted amide and peptide derivatives of the mercaptomethyl analogue of leucine, 2-[(R,S)mercaptomethyl]-4-methylpentanoic acid (H psi[SCH2]-DL-leucine), were synthesized and tested as inhibitors of pig synovial collagenase with soluble type I collagen as substrate. H psi[SCH2]-DL-leucine (IC50 = 320 microM) was about 10 times more potent than the beta-mercaptomethyl compound, N-acetylcysteine. The amide of H psi[SCH2]-DL-leucine was six times more potent than the parent thiol acid. Aliphatic N-substituted amides were less potent than the unsubstituted amide, whereas the N-benzyl amide was slightly more potent. Dipeptides, particularly those with an aromatic group at P2', were up to 20-fold more potent, while tripeptides with an aromatic L-amino acid at P2' and Ala-NH2 at P3' were up to 2200 times more potent than H psi[SCH2]-DL-leucine. The resolved diastereomers of H psi[SCH2]-DL-Leu-Phe-Ala-NH2 inhibited by 50% at 0.3 and 0.04 microM, respectively. The most potent inhibitor synthesized, an isomer of H psi[SCH2]-DL-Leu-L-3-(2'-naphthyl)alanyl-Ala-NH2, exhibited an IC50 of 0.014 microM, a value about 300 times less than similar thiol-based analogues of the P'-cleavage sequence of type I collagen, H psi[SCH2]-DL-Leu-Ala-Gly-Gln-. These structure-function studies establish within the present series of compounds that the most effective inhibitors of mammalian collagenase are not closely related to the P2'-P3' elements of the cleavage site of the natural substrate but rather have an aromatic group at the P2' position and Ala-NH2 at the P3' position.  相似文献   

11.
The binding of the competitive antagonist alpha-bungarotoxin (alpha-Btx) and the noncompetitive inhibitor phencyclidine (PCP) to a synthetic peptide comprising residues 172-227 of the alpha-subunit of the Torpedo acetylcholine receptor has been characterized. 125I-alpha-Btx bound to the 172-227 peptide in a solid-phase assay and was competed by alpha-Btx (IC50 = 5.0 x 10(-8) M), d-tubocurarine (IC50 = 5.9 X 10(-5)M), and NaCl (IC50 = 7.9 x 10(-2)M). In the presence of 0.02% sodium dodecyl sulfate, 125I-alpha-Btx bound to the 56-residue peptide with a KD of 3.5 nM, as determined by equilibrium saturation binding studies. Because alpha-Btx binds to a peptide comprising residues 173-204 with the same affinity and does not bind to a peptide comprising residues 205-227, the competitive antagonist and hence agonist binding site lies between residues 173 and 204. After photoaffinity labeling, [3H]PCP was bound to the 172-227 peptide. [3H]PCP binding was inhibited by chlorpromazine (IC50 = 6.3 x 10(-5)M), tetracaine (IC50 = 4.2 x 10(-6)M), and dibucaine (IC50 = 2.7 x 10(-4)M). Equilibrium saturation binding studies in the presence of 0.02% sodium dodecyl sulfate showed that [3H]PCP bound at two sites, a major site of high affinity with an apparent KD of 0.4 microM and a minor low-affinity site with an apparent KD of 4.6 microM. High -affinity binding occurred at a single site on peptide 205-227 (KD = 0.27 microM) and was competed by chlorpromazine but not by alpha-Btx.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Inhibition of bacterial peptide deformylase by biaryl acid analogs   总被引:2,自引:0,他引:2  
Peptide deformylase is an essential eubacterial metalloenzyme involved in the maturation of proteins by cleaving the N-formyl group from N-blocked methionine polypeptides. Biaryl acid analogs containing tetrazole, acyl sulfonamide, or carboxylate pharmacophores were found to be potent inhibitors of recombinant Escherichia coli peptide deformylase. Two of these compounds, a biphenyl tetrazole, compound 1, and a biphenyl acyl sulfonamide, compound 4, were competitive inhibitors with K(i) values of 1.2 and 6.0 microM, respectively. By analogy to the binding of related compounds to other metalloenzymes such as Bacteroides fragilis metallo-beta-lactamase CcrA and human carbonic anhydrase, a mechanism of inhibition is proposed for these peptide deformylase inhibitors where the acidic moieties form direct ionic interactions with the active site metal cation.  相似文献   

13.
A fluorogenic substrate for vertebrate collagenase and gelatinase, Dnp-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH2, was designed using structure-activity data obtained from studies with synthetic inhibitors and other peptide substrates of collagenase. Tryptophan fluorescence was efficiently quenched by the NH2-terminal dinitrophenyl group, presumably through resonance energy transfer. Increased fluorescence accompanied hydrolysis of the peptide by collagenase or gelatinase purified from culture medium of porcine synovial membranes or alkali-treated rabbit corneas. Amino acid analysis of the two product peptides showed that collagenase and gelatinase cleaved at the Gly-Leu bond. The peptide was an efficient substrate for both enzymes, with kcat/Km values of 5.4 microM-1 h-1 and 440 microM-1 h-1 (37 degrees C, pH 7.7) for collagenase and gelatinase, respectively. Under the same conditions, collagenase gave kcat/Km of about 46 microM-1 h-1 for type I collagen from calf skin. Since both enzymes exhibited similar Km values for the synthetic substrate (3 and 7 microM, respectively), the higher catalytic efficiency of gelatinase reflects predominantly an increase in kcat. Both enzymes were inhibited by HSCH2(R,S)CH[CH2CH(CH3)2]CO-L-Phe-L-Ala-NH2 in this assay (50% inhibition at 20 nM and less than 1 nM for collagenase and gelatinase, respectively). Soluble type I collagen was a competitive inhibitor of peptide hydrolysis by collagenase (KI = 0.8 microM) and exhibited mixed inhibition of gelatinase (KI = 0.3 microM).  相似文献   

14.
(E)-5-(2-bromovinyl)-2'-deoxyuridine 5'-triphosphate (BVdUTP), known as a specific inhibitor of herpes simplex virus (type 1)-DNA polymerase, was found to be a potent inhibitor of the activity of terminal deoxynucleotidyltransferase (TdT) from calf thymus. BVdUTP was not an efficient substrate of TdT, but it inhibited the incorporation of normal deoxynucleotide substrates in competitive fashion at the nucleotide binding site of TdT molecule. The Ki value for BVdUTP (5 microM) was much less than the Km value for dGTP (83 microM), indicating stronger affinity of the inhibitor to TdT than that of the substrate. These results indicate the usefulness of BVdUTP as a potent inhibitor of TdT for elucidation of the reaction mechanism of this enzyme.  相似文献   

15.
The two thymidine (dThd) kinases in human cells, the cytosolic, S-phase-specific TK1 and the mitochondrial, constitutively expressed TK2 were purified to homogeneity as judged from sodium dodecyl sulfate-gel electrophoresis. The substrate specificity of TK1 and TK2 toward natural substrates and important nucleoside analogues was compared. With TK1, the Km values for 5-fluorodeoxyuridine (FdUrd), 3'-azido-2',3'-dideoxythymidine (AZT), and 3'-fluoro-2',3'-dideoxythymidine (FLT) were 2.2, 0.6, and 2.1 microM as compared to 0.5 microM for dThd and 9 microM for deoxyuridine (dUrd). With TK2, dUrd, deoxycytidine (dCyd), and 5-fluorodeoxyuridine (FdUrd) were efficiently phosphorylated, but with distinctly different kinetics: Michaelis-Menten kinetics with dCyd, dUrd, and FdUrd; negative cooperativity with dThd. Negative cooperativity was also observed with AZT, although this drug was a very poor substrate for TK2 with a Vmax of 5-6% of that with dThd. FLT, 2',3'-dideoxycytidine (ddCyd), and arabinofuranosylcytosine (araC) were not substrates for TK2, and 2',3'-didehydrodideoxy-thymidine (D4T) was not a substrate for TK1 or TK2. On the other hand, AZT, FLT, and D4T were competitive inhibitors with Ki values of 0.6, 6, and 2073 microM for TK1, and 2, 10, and 78 microM for TK2, respectively. The much lower tolerance for modifications of the deoxyribose moiety of TK2 as compared to TK1 is important for the design of new antiviral nucleoside analogues intended for use in cells with different expression of TK1 and TK2.  相似文献   

16.
D Grobelny  U B Goli  R E Galardy 《Biochemistry》1985,24(26):7612-7617
The Ki's of three peptide ketone and three peptide alcohol inhibitors of carboxypeptidase A are compared with Ki's of their respective isosteric peptide substrates, N alpha-benzoyl-L-phenylalanine, N alpha-benzoylglycyl-L-phenylalanine, and N alpha-carbobenzoxyglycylglycyl-L-phenylalanine. For the isosteric ketone analogues of these substrates, the respective Ki's are as follows: (2RS)-2-benzyl-4-(3-methoxyphenyl)-4-oxobutanoic acid, 180 +/- 40 microM; (2RS)-5-benzamido-2-benzyl-4-oxopentanoic acid (V), 48 +/- 7 microM; (2RS)-2-benzyl-5-(carbobenzoxyglycinamido)-4-oxopentanoic acid (IX), 9 +/- 0.1 microM. For the alcohols derived by reduction of each of these ketones, Ki's are as follows: (2RS,4RS)-2-benzyl-4-(3-methoxyphenyl)-4-hydroxybutanoic acid, 190 +/- 10 microM; (2RS,4RS)-5-benzamido-2-benzyl-4-hydroxybutanoic acid (IV), 160 +/- 62 microM; (2RS,4RS)-2-benzyl-5-(carbobenzoxyglycinamido)-4-hy droxypentanoic acid (XI), 600 +/- 100 microM. Ki values for the competitive peptide ketone inhibitors decrease with increasing peptide chain length. This is consistent with the possibility of increased binding interaction between inhibitor and enzyme by simple occupation of additional binding subsites by adding more amino acid residues to the inhibitor. In contrast, the Ki values of the alcohols (competitive or mixed inhibition) increased or remain essentially unchanged with increasing chain length. Increasing the chain length of ketone inhibitor V to give IX decreases Ki by one-fifth. The Ki of ketone IX is also less than 1/30th the Ki of its isosteric peptide and almost 1/70th that of its isosteric alcohol, XI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Ribonuclease L (RNase L) is a latent endoribonuclease in an evolutionarily ancient interferon-regulated dsRNA-activated antiviral pathway. 2'-5' oligoadenylate (2-5A), the product of dsRNA-activated oligoadenylate synthetases (OASes), binds to ankyrin repeats near the amino terminus of RNase L, initiating a series of conformational changes that result in the activation of the endoribonuclease. A phylogenetically conserved RNA structure within group C enteroviruses inhibits the endoribonuclease activity of RNase L. In this study we report the mechanism by which group C enterovirus RNA inhibits RNase L. Viral RNA did not affect 2-5A binding to RNase L. Rather, the viral RNA inhibited the endoribonuclease domain. We used purified RNase L, purified 2-5A, and an RNA substrate with a 5' fluorophore and 3' quencher in FRET assays to measure inhibition of RNase L activity by the viral RNA. The group C enterovirus RNA was a competitive inhibitor of the endoribonuclease with a K(i) of 34 nM. Consistent with the kinetic profile of a competitive inhibitor, the viral RNA inhibited the constitutively active endoribonuclease domain of RNase L. We call this viral RNA the RNase L competitive inhibitor RNA (RNase L ciRNA).  相似文献   

18.
A direct UV-VIS spectrophotometric assay has been developed for peptide deformylase. This assay employs a novel class of peptide mimetics as deformylase substrates which, upon enzymatic removal of the N-terminal formyl group, rapidly release free thiols. The released thiols are quantitated using Ellman's reagent. A variety of peptide analogues that contain beta-thiaphenylalanine or beta-thiamethionine as the N-terminal residue were synthesized and found to be excellent substrates of the peptide deformylase from Escherichia coli (k(cat)/K(M) = 6.9 x 10(5) M(-1) s(-1) for the most reactive substrate). The deformylase reaction is conveniently monitored on a UV-VIS spectrophotometer in a continuous fashion. The versatility of the assay has been demonstrated by its application to kinetic characterization of the deformylase, pH profile studies, and enzyme inhibition assays. The assay can also be performed in an end-point fashion. The results demonstrate that this assay is a simple, highly sensitive, and rapid method to study kinetic properties of deformylases without the use of any coupling enzymes.  相似文献   

19.
Structural modifications to the peptide deformylase inhibitor BB-3497 are described. In this paper, we describe the initial SAR around this lead for modifications to both the P2' and P3' side chains. Enzyme inhibition and antibacterial activity data revealed that a variety of substituents are tolerated at the P2' and P3' positions of the inhibitor backbone. The data from this study highlights the potential for modification at the P2' and P3' positions to optimise the physicochemical properties.  相似文献   

20.
The effects of the neutral metalloendopeptidase inhibitor, thiorphan, and the angiotensin-converting enzyme inhibitor, captopril, on the changes in airway opening pressure (PaO), pulmonary arterial pressure (Ppa), and weight induced by intravascular administration of substance P were examined in isolated perfused and ventilated guinea pig lungs. Administration of 1 nmol substance P without enzyme inhibitors resulted in a significant (P less than 0.01) increase in the peak PaO during ventilation from 12.4 +/- 0.5 to 22.4 +/- 2.2 cmH2O; there were small statistically insignificant increases in Ppa. The changes in PaO peaked approximately 30 s after peptide infusion and returned to preinfusion values by 5 min. In the presence of combined thiorphan (5.6 microM) and captopril (7.7 microM) the magnitude of the Pao response at 30 s (41.5 +/- 3.8 cmH2O) and at 5 min (40.0 +/- 3.6 cmH2O) after peptide infusion was significantly greater than in control lungs (P less than 0.05). The effects of substance P on PaO in the presence of the various inhibitors were not related to amount of peptide recovered in the lung effluent. Reverse-phase high-performance liquid chromatographic analysis of [3H]Pro2,4 substance P perfused through the lungs demonstrated that the major products were consistent with intact substance P, substance P 1-4, and smaller peptides; only minor amounts of products consistent with substance P 1-7, 1-9, or 3-11 were identified. These data support our previous findings showing that the physiological effects of intravascular substance P are limited by peptide degradation; the latter process, once begun, proceeds rapidly to nearly complete peptide degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号