首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 764 毫秒
1.
Although multiple hypotheses have been proposed to explain group formation, few fully explain the diversity of social interactions found in foliage‐roosting bats. Among these bats, tent‐roosting species are capable of constructing their own shelters. Although many bats utilize tents previously constructed by other species, it has been suggested that a particular subset of tent‐roosting bats specialize on making tents from particular plant species. Tents provide protection from weather and often a place to roost close to foraging sites. Moreover, tent lifespan is plant species specific and may last from a few weeks to more than a year. To better understand effects that roosts have on social bonds of tent‐roosting bats, we conducted a literature review to collect information on social systems and tent lifespan. We tested correlated evolution of group stability and group longevity with tent lifespan using Pagel's method for discrete characters. We found that group stability and group longevity are correlated with tent lifespan. That there is correlated evolution between these characters contributes to our understanding of how different mechanisms interact to produce a variety of social systems in mammals.  相似文献   

2.
All species of bat found in Britain have declined in numbers and all are classified as vulnerable or endangered. Their habitual use of roof voids for roosting and the formation of breeding colonies brings them into close contact with structural timbers which are often treated with long-lasting pesticides to eradicate or prevent infestations of wood-boring insects or wood-rotting fungi. Some of the pesticides used have a considerable toxicity to mammals and are applied at a sufficiently high concentration to present a significant hazard to bats roosting on the treated timbers. Laboratory studies have shown that bats can be killed when they roost on timbers treated with lindane or pentachlorophenol, although some other chemicals, notably die synthetic pyrethroids, appear to be harmless. Numerous field incidents in which bats have been killed by remedial treatment chemicals emphasize the scale of the problem.  相似文献   

3.
Many North American bat species hibernate in both natural and artificial roosts. Although hibernacula can have high internal climate stability, they still retain spatial variability in their thermal regimes, resulting in various “microclimates” throughout the roost that differ in their characteristics (e.g., temperature and air moisture). These microclimate components can be influenced by factors such as the number of entrances, the depth of the roost, and distance to the nearest entrance of the roost. Tri‐colored bats are commonly found roosting in caves in winter, but they can also be found roosting in large numbers in culverts, providing the unique opportunity to investigate factors influencing microclimates of bats in both natural and artificial roost sites. As tri‐colored bats are currently under consideration for federal listing, information of this type could be useful in aiding in the conservation and management of this species through a better understanding of what factors affect the microclimate near roosting bats. We collected data on microclimate temperature and microclimate actual water vapor pressure (AWVP) from a total of 760 overwintering tri‐colored bats at 18 caves and 44 culverts. Using linear mixed models analysis, we found that variation in bat microclimate temperatures was best explained by external temperature and distance from nearest entrance in both caves and culverts. External temperature had a greater influence on microclimate temperatures in culverts than caves. We found that variation in microclimate AWVP was best explained by external temperature, distance from nearest entrance, and proportion from entrance (proportion of the total length of the roost from the nearest entrance) in culvert‐roosting bats. Variation in microclimate AWVP was best explained by external temperature and proportion from entrance in cave‐roosting bats. Our results suggest that bat microclimate temperature and AWVP are influenced by similar factors in both artificial and natural roosts, although the relative contribution of these factors differs between roost types.  相似文献   

4.
In summer, many temperate bat species use daytime torpor, but breeding females do so less to avoid interferences with reproduction. In forest‐roosting bats, deep tree cavities buffer roost microclimate from abrupt temperature oscillations and facilitate thermoregulation. Forest bats also switch roosts frequently, so thermally suitable cavities may be limiting. We tested how barbastelle bats (Barbastella barbastellus), often roosting beneath flaking bark in snags, may thermoregulate successfully despite the unstable microclimate of their preferred cavities. We assessed thermoregulation patterns of bats roosting in trees in a beech forest of central Italy. Although all bats used torpor, females were more often normothermic. Cavities were poorly insulated, but social thermoregulation probably overcomes this problem. A model incorporating the presence of roost mates and group size explained thermoregulation patterns better than others based, respectively, on the location and structural characteristics of tree roosts and cavities, weather, or sex, reproductive or body condition. Homeothermy was recorded for all subjects, including nonreproductive females: This probably ensures availability of a warm roosting environment for nonvolant juveniles. Homeothermy may also represent a lifesaver for bats roosting beneath loose bark, very exposed to predators, because homeothermic bats may react quickly in case of emergency. We also found that barbastelle bats maintain group cohesion when switching roosts: This may accelerate roost occupation at the end of a night, quickly securing a stable microclimate in the newly occupied cavity. Overall, both thermoregulation and roost‐switching patterns were satisfactorily explained as adaptations to a structurally and thermally labile roosting environment.  相似文献   

5.
Although the use of modified roosts has been reported in more than 20 species of bats in the tropics, comparative studies of the roosting ecology of congeneric tent‐roosting species are notably lacking. In the Paleotropics, this unique behavior has been described in two species belonging to the genus, Cynopterus: C. sphinx and C. brachyotis. However, it is not known whether tent roosting is an essential component of their roosting ecology, or whether the behavior is found in other members of the genus. In this study we characterize the roosting ecology of four sympatric species of Cynopterus in peninsular Malaysia and use these data to address two main questions. (1) Do all four species use modified roosts and, in those that do, is tent‐roosting obligate or opportunistic? (2) Do species pairs overlap in roost preferences and roosting habitat and, if so, is there evidence for interspecific interactions in relation to these resources? We radio‐tracked bats at two floristically distinct sites and located a total of 249 roosts. Interspecific roost niche overlap was minimal at both sites and we found no evidence for interspecific competition for roost resources at the local level. Species differences in roosting ecology were defined primarily by spatial separation of roosting habitats and secondarily by within‐habitat differences in roost selection. Importantly, we found that although periodic use of modified roosts was a characteristic shared by all four species, most roosts were unmodified, indicating that tent roosting is a facultative behavior in Malaysian Cynopterus.  相似文献   

6.

Background

How migration evolved represents one of the most poignant questions in evolutionary biology. While studies on the evolution of migration in birds are well represented in the literature, migration in bats has received relatively little attention. Yet, more than 30 species of bats are known to migrate annually from breeding to non-breeding locations. Our study is the first to test hypotheses on the evolutionary history of migration in bats using a phylogenetic framework.

Methods and Principal Findings

In addition to providing a review of bat migration in relation to existing hypotheses on the evolution of migration in birds, we use a previously published supertree to formulate and test hypotheses on the evolutionary history of migration in bats. Our results suggest that migration in bats has evolved independently in several lineages potentially as the need arises to track resources (food, roosting site) but not through a series of steps from short- to long-distance migrants, as has been suggested for birds. Moreover, our analyses do not indicate that migration is an ancestral state but has relatively recently evolved in bats. Our results also show that migration is significantly less likely to evolve in cave roosting bats than in tree roosting species.

Conclusions and Significance

This is the first study to provide evidence that migration has evolved independently in bat lineages that are not closely related. If migration evolved as a need to track seasonal resources or seek adequate roosting sites, climate change may have a pivotal impact on bat migratory habits. Our study provides a strong framework for future research on the evolution of migration in chiropterans.  相似文献   

7.
Adaptations for foraging in the complex airspaces of forest interiors may make bat species in the Asian tropics particularly susceptible to forest loss. However, ecomorphological analysis of Vietnamese bat assemblages challenges the hypothesis that, due to their greater vagility, cave‐roosting bats are less vulnerable to habitat fragmentation than foliage‐roosting species. Of the 13 most highly adapted forest‐interior species in our study, eight were cave‐roosting members of the Rhinolophidae and Hipposideridae and had wing morphologies closely resembling five foliage‐roosting members of the Murininae and Kerivoulinae—species typically thought to have low vagility. Overall, both cave‐roosting and foliage‐roosting bats exhibited a wide range of flight indices and species' wing designs corresponded with preferred foraging habitats, suggesting that foraging strategy may outweigh roost preference as a determinant of bat wing morphology and flight performance. Consequently, where such variation occurs, cave‐roosting bat ensembles are likely to include species with low vagility and similar sensitivity to habitat fragmentation. This could have important conservation implications as Asian karst formations support high cave densities and important bat diversity yet increasingly represent forest refugia in anthropogenic landscapes. We, therefore, advocate greater consideration of species vagility in determining conservation priorities for the region's bat fauna.  相似文献   

8.
A preliminary analysis of the use by bats of National Trust properties revealed that all 14 resident species have been recorded. Comparison with a national database of records for Britain managed by English Nature (NCC Bat database) showed that the scarcer species are better represented roosting in buildings on Trust properties than in other buildings. In addition, survey of Trust properties has shown that a high proportion of buildings are used by bats. Bats provide unusual wildlife links between buildings, gardens and countryside through which the Trust can promote nature conservation, and resolve conflicts between building or landscape restoration and the bat habitat requirements. The role of the County Bat Groups in survey and promotion of bats on Trust properties is becoming increasingly important, especially if we are able to identify key properties for bats.  相似文献   

9.
Numerous processes operating at landscape scales threaten bats (e.g., habitat loss, disease). Temperate bat species are rarely examined at commensurate scales because of logistical and modeling constraints. Recent modeling approaches now allow for presence-only datasets, like those often available for bats, to assist with the development of predictive distribution models. We describe the use of presence-only data and rigorous predictive distribution models to examine habitat selection by bats across Colorado, USA. We applied hierarchical Bayesian models to bat locations from 1906–2018 to examine relationships of 13 species with landscape covariates. We considered differences in type of activity (foraging, roosting, hibernation), seasonality (summer vs. winter), and scale (1, 5, 10, and 15-km buffers). These findings generated statewide probability of use models to guide management of bat species in response to threats (e.g., white-nose syndrome [WNS]). Analysis of buffers suggest selection of land cover and environmental covariates occurs at different scales depending on the species and activity. Pinyon (Pinus spp.)-juniper (Juniperus spp.) appeared as a positive association in the highest number of models, followed by montane woodland, supporting the importance of these forest types to bats in Colorado. Other covariates commonly associated with bats in Colorado include westerly longitudes, and negative associations with montane shrubland. Mechanical treatments within pinyon-juniper and montane woodlands should be conducted with caution to avoid harming bat communities. We developed hibernation models for only 2 species, making apparent the lack of winter records for bat species in the state. We also provide a composite predictive surface of small-bodied bats in Colorado that delineates where these species, vulnerable to WNS, converge. This tool provides managers with focal points to apply surveillance and response strategies for the impending arrival of the disease.  相似文献   

10.
Bats are a diverse radiation of mammals of enduring interest for understanding the evolution of sensory specialization. Colour vision variation among species has previously been linked to roosting preferences and echolocation form in the suborder Yinpterochiroptera, yet questions remain about the roles of diet and habitat in shaping bat visual ecology. We sequenced OPN1SW and OPN1LW opsin genes for 20 species of leaf‐nosed bats (family Phyllostomidae; suborder Yangochiroptera) with diverse roosting and dietary ecologies, along with one vespertilionid species (Myotis lavali). OPN1LW genes appear intact for all species, and predicted spectral tuning of long‐wavelength opsins varied among lineages. OPN1SW genes appear intact and under purifying selection for Myotis lavali and most phyllostomid bats, with two exceptions: (a) We found evidence of ancient OPN1SW pseudogenization in the vampire bat lineage, and loss‐of‐function mutations in all three species of extant vampire bats; (b) we additionally found a recent, independently derived OPN1SW pseudogene in Lonchophylla mordax, a cave‐roosting species. These mutations in leaf‐nosed bats are independent of the OPN1SW pseudogenization events previously reported in Yinpterochiropterans. Therefore, the evolution of monochromacy (complete colour blindness) has occurred in both suborders of bats and under various evolutionary drivers; we find independent support for the hypothesis that obligate cave roosting drives colour vision loss. We additionally suggest that haematophagous dietary specialization and corresponding selection on nonvisual senses led to loss of colour vision through evolutionary sensory trade‐off. Our results underscore the evolutionary plasticity of opsins among nocturnal mammals.  相似文献   

11.
Snags are used as roosting sites by many bats living in coniferous forests of western North America. Thus, providing sufficient numbers of snags both spatially and temporally in forested landscapes is critical to sustaining populations of these species. One aspect that remains poorly understood is length of time that roost snags persist on the landscape in a form suitable for use by bats. This information is critical for forest-planning efforts in ensuring long-term availability of snag resources on forested landscapes. We monitored condition of 339 snags used as roosting sites by long-legged myotis (Myotis volans) 1–5 years post-discovery from 2001 to 2006 across 6 watersheds in Washington, Oregon, and Idaho, USA. Persistence rates (i.e., probability a snag remains standing from year x to x + 1) of roost snags declined with year post-discovery in all study areas. Fir snags (Abies spp.) exhibited lower persistence rates than other conifer species. Data for the Washington area indicated only 4.3% of roost snags likely remain standing 10 years post-discovery, with half-lives of all snag species <3 roost-years. Model ranking of habitat models predicting fall year of roost snags revealed that snag condition models were the most parsimonious in all geographic locations. Roost snags larger in diameter, shorter in height, and with fewer branches on the bole were likely to persist for more years. These data indicate that snags used as roosts by long-legged myotis are suitable as roosting sites for only a few years before falling. We recommend management policies for coniferous forests in the Pacific Northwest, USA, that promote sufficient leave-trees in set-aside areas to provide for future suitable, large-diameter snags for bats in managed, forested landscapes. © 2012 The Wildlife Society.  相似文献   

12.
Social calls in bats have many functions, including mate attraction and maintaining contact during flight. Research suggests that social calls may also be used to transfer information about roosts, but no studies have yet demonstrated that calls are used to actively attract conspecifics to roosting locations. We document the social calls used by Spix''s disc-winged bat (Thyroptera tricolor) to actively recruit group members to roosts. In acoustic trials, we recorded two sets of calls; one from flying individuals termed ‘inquiry calls’, and another from roosting bats termed ‘response calls’. Inquiry calls were emitted by flying bats immediately upon release, and quickly (i.e. 178 ms) elicited production of response calls from roosting individuals. Most flying bats entered the roost when roosting individuals responded, while few bats entered the roost in the absence of a response. We argue that information transfer concerning roost location may facilitate sociality in T. tricolor, given the ephemeral nature of roosting structures used by this species.  相似文献   

13.
《Acta Oecologica》2007,31(1):119-126
The role of the forest canopy in protecting bats roosting in forest from predators is poorly known. We analysed the effect of canopy closure on emergence time in Barbastella barbastellus in a mountainous area of central Italy. We used radio-tracking to locate roosts and filmed evening emergence. Comparisons were made between roosts in open areas and those in dense forest. Median emergence time and illuminance were correlated. Moreover, from pregnancy to late lactation bats emerged progressively earlier, probably because of the exceptionally high wing loading affecting pregnant bats and the high energy demand of lactation. A significant influence of canopy closure on median emergence time was revealed after adjusting for the effects of light and reproductive state. Bats in open habitat emerged later than those roosting beneath closed canopy. In cluttered habitats, predators relying on vision may find it more difficult to detect and catch bats at light levels which would offer more chances of success when attacking prey in open habitats. Bats in dense forest are less vulnerable to predators and may take advantage of an earlier emergence by prolonging foraging. Although more vulnerable, lactating females roosting at open sites may benefit from warmer roosting conditions. Roosts in dense forest may be preferred under intense predation pressure. Forest management should favour canopy heterogeneity to provide bats with a range of roosting conditions. Our work emphasises the role of a fine-grained spatial scale in the roosting ecology of forest bats.  相似文献   

14.
Understanding the ephemerality of trees used as roosts by wildlife, and the number of roost trees needed to sustain their populations, is important for forest management and wildlife conservation. Several studies indicate that roosts are limiting to bats, but few studies have monitored longevity of roost trees used by bats over several years. From 2004–2007 in Cypress Hills Interprovincial Park, Saskatchewan, Canada, several big brown bats (Eptesicus fuscus) from a maternity group roosted in cavities in trembling aspen (Populus tremuloides) trees approximately 7 km southeast away from their original known roosting area (RA1). Using a long-term data set of the roost trees used by bats in this area from 2000–2007, we evaluated whether the movement of bats to the new roosting area (RA4) corresponded with annual and cumulative losses of roost trees. We also determined whether longevity of the roosts from the time we discovered bats first using them differed between the 2 roosting areas based on Kaplan-Meier estimates. Bats began using RA4 in addition to RA1 in 2004, when the cumulative loss of roost trees in RA1 over 3 consecutive years reached 18%. Most bats exclusively roosted in RA4 in 2007, when the cumulative loss of roost trees over 6 consecutive years had reached 46% in RA1. Annual survival for roost trees, from when we first discovered bats using them, was generally lower in RA1 than in RA4. Our results suggest that the movement of bats to the new roosting area corresponded with high losses of roost trees in RA1. This provides additional evidence that to maintain high densities of suitable roost trees for bats in northern temperature forests over several decades, management plans need to recruit live and dead trees in multiple age classes and stages of decay that will be suitable for the formation of new cavities. © 2019 The Wildlife Society.  相似文献   

15.
四川绵阳洞栖蝙蝠多样性及受胁现状   总被引:3,自引:0,他引:3  
石红艳  刘昊  吴毅  刘志刚 《四川动物》2006,25(1):128-131
1999~2005年,对四川省绵阳市洞栖性蝙蝠进行了凋杳。共采集到4科,5属,14种,约占四川蝙蝠种类31.8%,中国蝙蝠种类11.7%。其中,大足鼠耳蝠(Myotis ricketti)为中国特有种,中华鼠耳蝠(Myotis chinensis)已被列入《中国物种红色名录》中的易危(VU)种,南蝠(Iu io)等5种被列入近危(NT)种。调查中发现不少洞穴已被开发或正在被开发成旅游景点,人为干扰已严重威胁洞穴内蝙蝠的生存。建议对蝙蝠栖息地采取一定的保护措施,并加强保护蝙蝠的宣传教育。  相似文献   

16.
Bats in temperate and subtropical regions typically synchronize birth of a single young with peaks in resource availability driven by local climate patterns. In tropical rain forest, insects are available throughout the year, potentially allowing departures from seasonal monoestry. However, reproductive energy budgets may be constrained by the cost of commuting to foraging grounds from distant roosts. To test these hypotheses, we simultaneously tracked female reproductive activity of 11 insectivorous bat species, insect biomass, and local weather variables for 20 months in a Malaysian rain forest. Five species roost in forest structures and hence have low commuting costs, whereas six species depend on caves, which are limited in the landscape, and are presumed to incur higher commuting costs to foraging sites. Monthly insect biomass was positively correlated with monthly rainfall, and there was a significant relationship between insect biomass and lactation in cave‐roosting but not forest‐roosting species. Cave‐roosting species were seasonally monoestrus, with parturition confined to a two‐month period, whereas in forest‐roosting species, pregnancy and lactation were recorded throughout the year. Our results suggest that the energetic costs of commuting from roosts to foraging grounds shape annual reproductive patterns in tropical rain forest insectivorous bats. Ongoing changes in forest landscapes are likely to increase these costs for cave‐roosting bats, further restricting reproductive opportunities. Climate change is projected to influence the timing of rainfall events in many tropical habitats, which may disrupt relationships between rainfall, insect biomass, and bat reproductive timing, further compromising reproductive success.  相似文献   

17.
Abstract: Several species of bats in the Pacific Northwest of the United States, including long-legged myotis (Myotis volans), are dependent on snags in coniferous forests during summer for roosting and rearing young. Thus, data on roosting preferences of this species are needed to integrate their habitat requirements into shifting plans for management of forests in this region. Therefore, from 2001 to 2006, we radiotracked adult female long-legged myotis (n = 153) to day roosts (n = 395) across 6 watersheds in Washington, Oregon, and Idaho, USA, and compared characteristics associated with roosting sites to those of random snags (n = 260) sampled in the same watersheds using use-availability logistic regression and an information-theoretic approach. Model rankings varied among geographic locations, with quantity of stem surface for roosting the best model for explaining roost-site selection of long-legged myotis in both Washington and Oregon. Model rankings for populations of bats in Idaho found stand- and landscape-scale features to be important in roost-site selection, with a habitat fragmentation model and a foraging habitat quality model both demonstrating strong support as best model. Choice of day roosts by long-legged myotis was associated with snags that were taller, intact at the top of the stem, possessing a greater amount of exfoliating bark, in stands with a larger basal area of dead stems, and in landscapes that were unfragmented (i.e., supporting lesser amounts of edge). Results indicate that roost-site selection of bats in western coniferous forests, particularly long-legged myotis, is likely to be region-specific. We encourage land managers to consider importance of geographic variation in intraspecific habitat use in forest-dwelling bats when implementing silvicultural systems to promote biological diversity in actively managed forests of the Pacific Northwest region.  相似文献   

18.
扁颅蝠与褐扁颅蝠的集群结构   总被引:4,自引:0,他引:4  
2001—2002年在广西宁明县和龙州县利用直接观察、捕捉测量(共捕到197群蝙蝠,全捕180群)和标记重捕法(标记了31群的101只扁颅蝠,重捕到36只)比较研究了扁颅蝠(tylonycteris pachypusa)与褐扁颅蝠(T.robustula)的集群结构。结果发现:扁颅蝠与褐扁颅蝠主要栖宿在刺竹(Bambusa stenostachya)的竹筒内,通过竹筒上的裂缝进出。扁颅蝠栖宿的竹筒长平均为27.7cm,外围直径平均为23.6cm;褐扁颅蝠的分别为28.3cm和23.8cm。扁颅蝠栖宿群大小为1—24只,褐扁颅蝠栖宿群大小为1—13只;2种蝙蝠的栖宿群中皆为独居所占比例最大(扁颅蝠为22.30%,褐扁颅蝠为40.63%),2只所占比例次之(分别为14.87%和18.75%),其它大小类型呈不规则变化。扁颅蝠栖宿群的性别组成,以雌雄混居最常见(占54.72%),其次为独居雄性(占20.95%),而褐扁颅蝠栖宿群雌雄混居群与独居雄性所占比例相当(均为40.63%)。2种蝙蝠的雄性趋向于独居,而雌性趋向于群居。扁颅蝠与褐扁颅蝠可以栖宿在同一片竹林内,并且可以在不同时间轮流使用同一个栖宿竹筒,但2种蝙蝠从未共栖于同一个竹筒内。另外,标记重捕扁颅蝠发现:扁颅蝠经常变换栖宿竹筒(栖宿竹筒不固定);同时栖宿群之间经常发生个体交换[动物学报50(3):326—333.2004]。  相似文献   

19.
20.
We investigated roosting and hunting site fidelity of Daubenton's bats Myotis daubentonii (Kuhl, 1817) in the Forêt de Soignes, an old-stand forest dominated by 150–200-year-old beeches, during the summers of 2003 and 2004. Roosting behaviour and hunting activity over ponds of adult females and juveniles were monitored using radio-telemetry. Eighteen roosts were located, all in natural cavities. The bats occupied a limited number of trees located in a specific and small roosting area. This roost aggregation was not linked to the distribution of hollow trees. Furthermore, whereas all 11 ponds in the study area were exploited by Daubenton's bats, monitored individuals were limited to two ponds to which they showed high fidelity. These two ponds were not the closest to the roosting area. Overall, these results show that at least for the time we conducted our experiment, female and juvenile Daubenton's bats are highly faithful to specific roosting and hunting grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号