首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
开花是高等植物由营养生长到生殖生长的重要转变.拟南芥的开花时间受许多基因的调控,其中一些基因的表现遗传调节对开花时间的控制发挥着重要的作用.本文就这些基因以表观遗传方式调节拟南芥开花过程的最新研究进程作简要介绍.  相似文献   

3.
The elongation rate of cowpea epicotyls from whole cowpea (Vigna sinensis) seedlings and derooted and debladed plants (explants) increased after the main light period (8-hour duration) was extended with either continuous low intensity tungsten light or brief (5 minutes) far-red (FR) irradiation. This end-of-day FR effect was reversed by red (R) irradiation suggesting the involvement of phytochrome. These results confirm and extend those obtained previously with other species. Localization studies indicate the epicotyl to be the site of the photoreceptor. Treatment of cowpea seedlings with paclobutrazol, a gibberellin (GA) biosynthetic inhibitor, abolished the FR promoted epicotyl elongation, indicating a role for GAs in this process. There was no significant difference in epicotyl elongation rates of R plus FR irradiated explants treated with GA1 or GA20 and R irradiated explants treated with GA1. However, R irradiation inhibited subsequent epicotyl elongation of GA20 treated explants. Moreover, the observation, using GC-MS, that GA1 and GA20 are native GAs in cowpea lends support to the concept that phytochrome may control the conversion of endogenous GA20 to GA1 in cowpea.  相似文献   

4.
Many plants respond to competition signals generated by neighbors by evoking the shade avoidance syndrome, including increased main stem elongation and reduced branching. Vegetation-induced reduction in the red light:far-red light ratio provides a competition signal sensed by phytochromes. Plants deficient in phytochrome B (phyB) exhibit a constitutive shade avoidance syndrome including reduced branching. Because auxin in the polar auxin transport stream (PATS) inhibits axillary bud outgrowth, its role in regulating the phyB branching phenotype was tested. Removing the main shoot PATS auxin source by decapitation or chemically inhibiting the PATS strongly stimulated branching in Arabidopsis (Arabidopsis thaliana) deficient in phyB, but had a modest effect in the wild type. Whereas indole-3-acetic acid (IAA) levels were elevated in young phyB seedlings, there was less IAA in mature stems compared with the wild type. A split plate assay of bud outgrowth kinetics indicated that low auxin levels inhibited phyB buds more than the wild type. Because the auxin response could be a result of either the auxin signaling status or the bud’s ability to export auxin into the main shoot PATS, both parameters were assessed. Main shoots of phyB had less absolute auxin transport capacity compared with the wild type, but equal or greater capacity when based on the relative amounts of native IAA in the stems. Thus, auxin transport capacity was unlikely to restrict branching. Both shoots of young phyB seedlings and mature stem segments showed elevated expression of auxin-responsive genes and expression was further increased by auxin treatment, suggesting that phyB suppresses auxin signaling to promote branching.The development of shoot branches is a multistep process with many potential points of regulation. After the formation of an axillary meristem in the leaf axil, an axillary bud may form through the generation of leaves and other tissues. The axillary bud may grow out to form a branch, or may remain dormant or semidormant for an indefinite period of time (Bennett and Leyser, 2006). In Arabidopsis (Arabidopsis thaliana), the position of the bud in the rosette is a strong determinant of its fate, with upper buds displaying greater outgrowth potential than lower buds. In fact, the varying potential of buds at different positions is maintained even in buds that are activated to form branches, with the upper buds growing out first and most robustly, and lower buds growing out after a time lag and with less vigor (Hempel and Feldman, 1994; Finlayson et al., 2010).The disparate fate of buds at different rosette positions is mediated, at least in part, by the process of correlative inhibition, whereby remote parts of the plant inhibit the outgrowth of the buds (Cline, 1997). Correlative inhibition is typically associated with the bud-inhibiting effects of auxin sourced in the shoot apex and transported basipetally in the polar auxin transport stream (PATS). Auxin in the PATS does not enter the bud and thus must act indirectly; however, the exact mechanism by which auxin inhibits bud outgrowth is not well understood, despite many years of intensive study (Waldie et al., 2010; Domagalska and Leyser, 2011). Evidence supports divergent models by which auxin may regulate branching. One model contends that the PATS modulates a bud outgrowth inhibiting second messenger (Brewer et al., 2009). Another model postulates a mechanism whereby competition between the main shoot and the axillary bud for auxin export in the PATS regulates bud activity (Bennett et al., 2006; Prusinkiewicz et al., 2009; Balla et al., 2011).In addition to intrinsic developmental programming, branching is also modulated by environmental signals, including competition signals generated by neighboring plants. The red light:far-red light ratio (R:FR) is an established competition signal that is modified (reduced) by neighboring plants and sensed by the phytochrome family of photoreceptors. A low R:FR evokes the shade avoidance syndrome with plants displaying, among other phenotypes, enhanced shoot elongation and reduced branching (Smith, 1995; Ballaré, 1999; Franklin and Whitelam, 2005; Casal, 2012). Phytochrome B (phyB) is the major sensor contributing to R:FR responses, and loss of phyB function results in a plant that displays a phenotype similar to constitutive shade avoidance. It should be noted that actual shade avoidance is mediated by additional phytochromes and that the complete absence of functional phyB in the loss-of-function mutant may also result in a phenotype that does not exactly mirror shade avoidance. Loss of phyB function leads to reduced branching and altered expression of genes associated with hormone pathways and bud development in the axillary buds (Kebrom et al., 2006; Finlayson et al., 2010; Kebrom et al., 2010; Su et al., 2011). In Arabidopsis, phyB deficiency differentially affects the outgrowth of buds from specific positions in the rosette and thus demonstrates an important function in the regulation of correlative inhibition (Finlayson et al., 2010; Su et al., 2011), a process known to be influenced by auxin. Many aspects of auxin signaling are dependent on AUXIN RESISTANT1 (AXR1), which participates in activating the Skip-Cullin-F-box auxin signaling module (del Pozo et al., 2002). Reduced auxin signaling resulting from AXR1 deficiency enabled phyB-deficient plants to branch profusely and reduced correlative inhibition, thus establishing auxin signaling downstream of phyB action (Finlayson et al., 2010). Although a link between auxin signaling and phyB regulation of branching was demonstrated, the details of the interaction were not discovered.The relationship between auxin and shade avoidance responses has been investigated in some detail. Auxin signaling was implicated in shade avoidance responses mediated by ARABIDOPSIS THALIANA HOMEOBOX PROTEIN2 in young Arabidopsis seedlings (Steindler et al., 1999). Rapid changes in leaf development resulting from canopy shade were also shown to involve TRANSPORT INHIBITOR RESPONSE1-dependent auxin signaling (Carabelli et al., 2007). A link between auxin abundance and the response to the R:FR was demonstrated in Arabidopsis deficient for the TRP AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) auxin biosynthetic enzyme (Tao et al., 2008). Young wild-type seedlings respond to a decreased R:FR by increasing indole-3-acetic acid (IAA) biosynthesis, accumulating IAA, increasing hypocotyl and petiole elongation, and increasing leaf elevation. However, these responses are reduced in plants deficient in TAA1. Subsequent studies confirmed the importance of auxin in responses to the R:FR (Pierik et al., 2009; Kozuka et al., 2010; Keller et al., 2011), and also identified the auxin transporter PIN-FORMED3 as essential for hypocotyl elongation responses in young seedlings (Keuskamp et al., 2010). In addition to the roles of auxin abundance and transport in the process, auxin sensitivity has also been implicated in shade avoidance. Several auxin signaling genes are direct targets of the phytochrome signaling component PHYTOCHROME INTERACTING FACTOR5 (PIF5), and these genes are misregulated in Arabidopsis deficient in either PHYTOCHROME INTERACTING FACTOR4 (PIF4) or PIF5 (Hornitschek et al., 2012; Sun et al., 2013). Auxin-responsive hypocotyl elongation and auxin-induced gene expression were also reduced in young seedlings of the pif4pif5 double mutant (Hornitschek et al., 2012), which show defects in shade avoidance responses (Lorrain et al., 2008).Although some aspects of the regulation of branching are now understood, there are still many gaps in our knowledge of the process, especially as related to the regulation of branching by light signals. Because auxin is known to play a major role in regulating branch development, and because recent studies have implicated auxin in general shade avoidance responses and specifically in the regulation of branching by phyB, the hypothesis that auxin homeostasis, transport, and/or signaling may contribute to the hypobranching phenotype of phyB-deficient plants was generated and tested, using a variety of physiological and molecular approaches.  相似文献   

5.
Flowering was significantly promoted in 4-year-old grafts of mature coastal Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) clones by exogenous gibberellins (GAs) A4 and A7 (as a mixture) applied alone and in combination with A5 and A9. Biweekly applications of 400 μg GA4/7 per branch between late March and late June gave a 5-fold increase in ovulate and 3-fold increase in staminate strobilus production over untreated controls. 6N-benzyladenine and 2,3,5-triiodobenzoic acid applied in combination with GAs had no consistent effect on strobilus production. Non-destructive branch girdling, ineffective by itself as a cultural treatment, enhanced the GA benefit to flowering. Exogenous application of GA4/7 is effective and appears to be a practical method for promotion of early and enhanced flowering in grafted Douglas-fir seed orchards.  相似文献   

6.
A daylength extension with incandescent light is more effective in promoting flowering of long-day plants like Hyoscyamus niger than fluorescent light. A low phytochrome photoequilibrium (Pfr/Ptot), attained by a far-red irradiation at the close of long days under fluorescent light, also promotes flowering. Moreover, if flower initiation processes are initiated by several long days, a low phytochrome photoequilibrium at the end of short, postinduction photoperiods also enhances flowering. The initiation phase of flowering requires Pfr to be present whereas the development phase proceeds more rapidly in the absence of Pfr. Spectral dependence studies, therefore, could be misinterpreted if the initiation and development stages are combined into a single audit of flowering.  相似文献   

7.
Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. In Arabidopsis thaliana, there are genes encoding at least five phytochromes, and it is of interest to learn if the different phytochromes have overlapping or distinct functions. To address this question for two of the phytochromes in Arabidopsis, we have compared light responses of the wild type with those of a phyA null mutant, a phyB null mutant, and a phyA phyB double mutant. We have found that both phyA and phyB mutants have a deficiency in germination, the phyA mutant in far-red light and the phyB mutant in the dark. Furthermore, the germination defect caused by the phyA mutation in far- red light could be suppressed by a phyB mutation, suggesting that phytochrome B (PHYB) can have an inhibitory as well as a stimulatory effect on germination. In red light, the phyA phyB double mutant, but neither single mutant, had poorly developed cotyledons, as well as reduced red-light induction of CAB gene expression and potentiation of chlorophyll induction. The phyA mutant was deficient in sensing a flowering response inductive photoperiod, suggesting that PHYA participates in sensing daylength. In contrast, the phyB mutant flowered earlier than the wild type (and the phyA mutant) under all photoperiods tested, but responded to an inductive photoperiod. Thus, PHYA and PHYB appear to have complementary functions in controlling germination, seedling development, and flowering. We discuss the implications of these results for possible mechanisms of PHYA and PHYB signal transduction.  相似文献   

8.
Gibberellins (GAs) were effective in promoting flowering in sexually mature (45-year-old scions) grafts of loblolly pine (Pinus taeda L.). Seed-cone production was increased 12-fold in field-grown, grafted ramets by bi-weekly, May-September applications of 500 μg per branch of GA4/7. Gibberellin A3 was equally effective at 500 μg but not at 100 μg per branch, while GA5 was ineffective at either concentration. A second study using potted, less-sexually mature (8-to 10-year-old scions) grafts gave a reduced level of seed cones in response to GAs. However, even on these younger grafts GA4/7 was a significant promotive treatment, GA3 being considerably less effective. Branch girdling, tested as an adjunct treatment, was ineffective. It is now apparent that exogenous applications of GA4/7 are effective on a number of Pinaceae species, and their use to promote earlier and more abundant flowering in breeding orchards of grafted ramets for at least two species, loblolly pine and Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] is practical.  相似文献   

9.
We examined whether spectrally active phytochrome A (PhyA) and phytochrome B (PhyB) play specific roles in the induction of seed germination in Arabidopsis thaliana (L.) Heynh., using PhyA- and PhyB-null mutants, fre1-1 (A. Nagatani, J.W. Reed, J. Chory [1993] Plant Physiol 102: 269-277) and hy3-Bo64 (J. Reed, P.Nagpal, D.S. Poole, M. Furuya, J. Chory [1993] Plant Cell 5: 147-157). When dormant seeds of each genotype imbibed in the dark on aqueous agar plates, the hy3 (phyB) mutant did not germinate, whereas the fre1 (phyA) mutant germinated at a rate of 50 to 60%, and the wild type (WT) germinated at a rate of 60 to 70%. By contrast, seeds of all genotypes germinated to nearly 100% when plated in continuous irradiation with white or red light. When plated in continuous far-red light, however, frequencies of seed germination of the WT and the fre1 and hy3 mutants averaged 14, nearly 0, and 47%, respectively, suggesting that PhyB in the red-absorbing form prevents PhyA-dependent germination under continuous far-red light. When irradiated briefly with red or far-red light after imbibition for 1 h, a typical photoreversible effect on seed germination was observed in the fre1 mutant and the WT but not in the hy3 mutant. In contrast, when allowed to imbibe in the dark for 24 to 48 h and exposed to red light, the seed germination frequencies of the hy3 mutant were more than 40%. Immunoblot analyses of the mutant seeds showed that PhyB apoprotein accumulated in dormant seeds of the WT and the fre1 mutant as much as in the seeds that had imbibed. In contrast, PhyA apoprotein, although detected in etiolated seedlings grown in the dark for 5 d, was not detectable in the dormant seeds of the WT and the hy3 mutant. The above physiological and immunochemical evidence indicates that PhyB in the far-red-absorbing form was stored in the Arabidopsis seeds and resulted in germination in the dark. Hence, PhyA does not play any role in dark germination but induces germination under continuous irradiation with far-red light. Finally, we examined seeds from a signal transduction mutant, det1, and a det1/hy3 double mutant. The det1 seeds exhibited photoreversible responses of germination on aqueous agar plates, and the det1/hy3 double mutant seeds did not. Hence, DET1 is likely to act in a distinct pathway from PhyB in the photoregulation of seed germination.  相似文献   

10.
We have investigated the involvement of phytochrome B in the early-flowering response of Arabidopsis thaliana L. seedlings to low red:far-red (R/FR) ratio light conditions. The phytochrome B-deficient hy3 (phyB) mutant is early flowering, and in this regard it resembles the shade-avoidance phenotype of its isogenic wild type. Seedlings carrying the hy2 mutation, resulting in a deficiency of phytochrome chromophore and hence of active phytochromes, also flower earlier than wild-type plants. Whereas hy3 or hy2 seedlings show only a slight acceleration of flowering in response to low R/FR ratio, seedlings that are doubly homozygous for both mutations flower earlier than seedlings carrying either phytochrome-related mutation alone. This additive effect clearly indicates the involvement of one or more phytochrome species in addition to phytochrome B in the flowering response as well as indicating the presence of some functional phytochrome B in hy2 seedlings. Seedlings that are homozygous for the hy3 mutation and one of the fca, fwa, or co late-flowering mutations display a pronounced early-flowering response to low R/FR ratio. A similar response to low R/FR ratio is displayed by seedlings doubly homozygous for the hy2 mutation and any one of the late-flowering mutations. Thus, placing the hy3 or hy2 mutations into a late-flowering background has the effect of uncovering a flowering response to low R/FR ratio. Seedlings that are triply homozygous for the hy3, hy2 mutations and a late-flowering mutation flower earlier than the double mutants and do not respond to low R/FR ratio. Thus, the observed flowering responses to low R/FR ratio in phytochrome B-deficient mutants can be attributed to the action of at least one other phytochrome species.  相似文献   

11.
拟南芥开花时间调控的分子基础   总被引:2,自引:0,他引:2  
在合适的时间开花对大多数植物的生存和成功繁衍极为重要。开花时间受错综复杂的环境因素和植物自身的遗传因子影响,由开花调控因子所构成的光周期、春化、温度、赤霉素、自主以及年龄等至少6条既相互独立又相互联系的遗传途径调控。该文综述了有关拟南芥(Arabidopsis thaliana)开花时间调控的分子机制的最新研究进展,并对今后的研究进行了展望。  相似文献   

12.
The kinetics of phototransduction of phytochrome A (phyA) and phytochrome B (phyB) were compared in etiolated Arabidopsis thaliana seedlings. The responses of hypocotyl growth, cotyledon unfolding, and expression of a light-harvesting chlorophyll a/b-binding protein of the photosystem II gene promoter fused to the coding region of β-glucuronidase (used as a reporter enzyme) were mediated by phyA under continuous far-red light (FR) and by phyB under continuous red light (R). The seedlings were exposed hourly either to n min of FR followed by 60 minus n min in darkness or to n min of R, 3 min of FR (to back-convert phyB to its inactive form), and 57 minus n min of darkness. For the three processes investigated here, the kinetics of phototransduction of phyB were faster than that of phyA. For instance, 15 min R h−1 (terminated with a FR pulse) were almost as effective as continuous R, whereas 15 min of FR h−1 caused less than 30% of the effect of continuous FR. This difference is interpreted in terms of divergence of signal transduction pathways downstream from phyA and phyB.  相似文献   

13.
Phytochrome B affects responsiveness to gibberellins in Arabidopsis.   总被引:16,自引:5,他引:16       下载免费PDF全文
J W Reed  K R Foster  P W Morgan    J Chory 《Plant physiology》1996,112(1):337-342
Plant responses to red and far-red light are mediated by a family of photoreceptors called phytochromes. Arabidopsis thaliana seedlings lacking one of the phytochromes, phyB, have elongated hypocotyls and other tissues, suggesting that they may have an alteration in hormone physiology. We have studied the possibility that phyB mutations affect seedling gibberellin (GA) perception and metabolism by testing the responsiveness of wild-type and phyB seedlings to exogenous GAs. The phyB mutant elongates more than the wild type in response to the same exogenous concentrations of GA3 or GA4, showing that the mutation causes an increase in responsiveness to GAs. Among GAs that we were able to detect, we found no significant difference in endogenous levels between wild-type and phyB mutant seedlings. However, GA4 levels were below our limit of detectability, and the concentration of that active GA could have varied between wild-type and phyB mutant seedlings. These results suggest that, although GAs are required for hypocotyl cell elongation, phyB does not act primarily by changing total seedling GA levels but rather by decreasing seedling responsiveness to GAs.  相似文献   

14.
Phytochrome B (phyB) can adjust morphological and physiological responses according to changes in the red : far‐red (R:FR) ratio. phyB‐driven acclimation of plants to open environments (high R:FR ratio) increases carbon gain at the expense of increased water loss. This behaviour alleviates stressful conditions generated by an excess of light, but increases the chances of desiccation. Here we evaluated how phyB modulates this drought‐tolerance response by comparing wild‐type Arabidopsis thaliana adult plants to the null phyB in response to water shortage. phyB wilted before the wild type, and this was due to phyB maintaining open stomata under a reduction in soil water availability. Although phyB presented enhanced ABA levels under well‐watered conditions, this mutant was less sensitive than the wild type in diminishing stomatal conductance in response to exogenous ABA application. Reduced sensitivity to ABA in phyB correlated with a lower expression of ABCG22, which encodes a putative ABA influx transporter, and PYL5, which encodes a soluble ABA receptor. Furthermore, the expression of RAB18 and RD29A, both typical ABA‐induced genes, was lower in phyB than the wild type after ABA treatment. We propose that phyB contributes to the acclimation of plants to open environments by enhancing ABA sensitivity when soil water becomes limiting.  相似文献   

15.
The sorghum (Sorghum bicolor L. Moench) cultivar 58M, which contains the null mutant phytochrome B gene, shows reduced photoperiodic sensitivity and exhibits a shade-avoidance phenotype. Ethylene production by seedlings of wild-type and phytochrome B mutant cultivars was monitored every 3 h, and both cultivars were found to produce ethylene in a circadian rhythm, with peak production occurring during the day. The phytochrome B mutant produces rhythmic peaks of ethylene with approximately 10 times the amplitude of the wild-type counterpart with the same period and diurnal timing. The source of the mutant's additional ethylene is the shoot. The diurnal rhythm can be produced with either light or temperature cycles; however, both light and temperature cycles are required for circadian entrainment. The temperature signal overrides the light signal in the production of diurnal rhythms, because seedlings grown under thermoperiods reversed with the photoperiod produced ethylene peaks during the warm nights. To examine the effect of extreme shading on ethylene production, seedlings were grown under dim, far-red-enriched light. This treatment duplicated the phytochrome B mutant's shade-avoidance phenotype in the wild type and caused the wild type to produce ethylene peaks similar to those observed in the mutant. The results confirm that phytochrome B is not required for proper function of circadian timing, but it may be involved in modulating physiological rhythms driven by the biological clock oscillator.  相似文献   

16.
The Effect of Gibberellins on Flowering in Roses   总被引:1,自引:0,他引:1  
The gibberellins A1, A3, A5, A8, A19, A20, and A29 were identified in vegetative shoot tips of Rosa canina by comparing their mass spectra and Kovats retention indices with those of standards. Most wild roses have a short flowering season of 2–4 weeks in spring, whereas most modern cultivars flower recurrently. `Félicité et Perpétue' is a short-season hybrid from a cross between a wild rose and a recurrent-flowering rose, whereas its sport, `Little White Pet,' flowers recurrently. The concentrations of gibberellins (GAs) were measured in shoot apices of both cultivars. In March (before floral initiation in spring) the concentrations of GA1 and GA3 were respectively threefold and twofold higher in `Félicité et Perpétue' than in `Little White Pet.' In April (after floral initiation) the concentrations of both gibberellins were substantially greater than in March, and concentrations of GA1 and GA3 were, respectively, 17-fold and 12-fold greater in `Félicité et Perpétue' than in `Little White Pet.' It is postulated that, in `Félicité et Perpétue,' floral initiation occurs when concentrations of GAs are low and is inhibited when concentrations of GAs are high, whereas in `Little White Pet' concentrations of GAs remain at permissive levels throughout the growing season. Applications of GA1 and GA3 to axillary shoots in March inhibited floral development in `Félicité et Perpétue' but not in `Little White Pet.' This suggests that the combined concentration of exogenous and endogenous gibberellins might have been raised to inhibitory levels in the former but not in the latter cultivar. Received January 10, 1999; accepted June 16, 1999  相似文献   

17.
In open places, plants are exposed to higher fluence rates of photosynthetically active radiation and to higher red to far-red ratios than under the shade of neighbor plants. High fluence rates are known to increase stomata density. Here we show that high, compared to low, red to far-red ratios also increase stomata density in Arabidopsis (Arabidopsis thaliana). High red to far-red ratios increase the proportion of phytochrome B (phyB) in its active form and the phyB mutant exhibited a constitutively low stomata density. phyB increased the stomata index (the ratio between stomata and epidermal cells number) and the level of anphistomy (by increasing stomata density more intensively in the adaxial than in the abaxial face). phyB promoted the expression of FAMA and TOO MANY MOUTHS genes involved in the regulation of stomata development in young leaves. Increased stomata density resulted in increased transpiration per unit leaf area. However, phyB promoted photosynthesis rates only at high fluence rates of photosynthetically active radiation. In accordance to these observations, phyB reduced long-term water-use efficiency estimated by the analysis of isotopic discrimination against 13CO2. We propose a model where active phyB promotes stomata differentiation in open places, allowing plants to take advantage of the higher irradiances at the expense of a reduction of water-use efficiency, which is compensated by a reduced leaf area.Photosynthesis, transpiration, and transpiration efficiency, the ratio of carbon fixation to water loss, are key physiological traits considered by plant breeders when selecting productive and water-use efficient plants (Rebetzke et al., 2002; Richards, 2006; Passioura, 2007). Opening of the stomata allows the uptake of CO2 necessary for photosynthesis but it simultaneously increases the loss of water and the potential deterioration of the water status. Plants are finely tuned to efficiently face this dilemma. Under low levels of photosynthetically active radiation (PAR), stomata open just enough to prevent the limitation of photosynthesis by CO2 influx and the photochemical phase of photosynthesis is the limiting step. If PAR increases, allowing higher rates of photochemical reactions, which leads to more ATP and NADPH, stomatal conductance also increases to allow sufficient CO2 to use these products in the Calvin cycle (Donahue et al., 1997; Yu et al., 2004). If instead of following this response coordinated to photosynthetic rates, stomata opened maximally in response to low PAR, more CO2 than needed would be allowed to reach the chloroplast at the expense of unnecessary water loss.Canopy shade light is characterized not only by reduced PAR levels but also by a reduced proportion of red light (R) compared to far-red light (FR) caused by the selective absorption of visible light by photosynthetic pigments and the reflection and transmission of FR (Holmes and Smith, 1977a). This low R/FR ratio compared to unfiltered sunlight is perceived by phytochromes (Smith, 1982; Ballaré et al., 1987; Pigliucci and Schmitt, 1999), mainly phytochrome B (phyB; Yanovsky et al., 1995). In Arabidopsis (Arabidopsis thaliana), the high R/FR signals perceived by phyB decrease the length of the stem and petioles, cause a more prostrate position of the leaves, and promote branching and delay flowering, among other responses (Reed et al., 1993; Franklin and Whitelam, 2005).Transgenic plants of potato (Solanum tuberosum) expressing the PHYB gene of Arabidopsis show higher stomatal conductance, transpiration rates, and photosynthesis rates per unit leaf area than the wild type (Thiele et al., 1999; Boccalandro et al., 2003; Schittenhelm et al., 2004). Stomata density is unaffected, indicating that phyB enhances the aperture of the stomatal pore in these transgenic plants. Stomatal conductance is higher in Fuchsia magellanica plants exposed to R than to FR pulses at the end of the photoperiod (Aphalo et al., 1991). However, there are no general effects of R/FR treatments on the aperture of the stomatal pore. The stomata of Commelina communis (Roth-Bejerano, 1981) and of the orchid of the genus Paphiopedilum (Talbott et al., 2002) open in response to R and this effect is reversed by FR, indicating a control by phytochrome. Nevertheless, this FR reversal of the effect of R is absent in wild-type Arabidopsis (Talbott et al., 2003). In Phaseolus vulgaris, FR accelerates stomatal movements during dark to light (opening) and light to dark (closing) transitions and this effect is R reversible, but phytochrome status has no effects under constant conditions of light or darkness (Holmes and Klein, 1985). In the latter species, prolonged FR added to a white-light background promotes stomatal conductance but this effect cannot be ascribed to phytochrome (Holmes et al., 1986).In addition to this rapid adjustment of the CO2 and water vapor fluxes to daily fluctuations in light levels via the regulation of the stomatal pore aperture, plants acclimate to the prevailing PAR conditions by changing stomatal density (number of stomata per unit area) and stomatal index (the ratio between the number of stomata in a given area and the total number of stomata and other epidermal cells in that same area). Stomatal density and stomatal index are higher in plants grown in full sunlight at high levels of PAR than in plants grown in shade (Willmer and Fricker, 1996; Lake et al., 2001; Thomas et al., 2004; Casson and Gray, 2008). Mature leaves sense the environment (light intensity and CO2) and produce a systemic signal that regulates stomatal density and index in young leaves (Coupe et al., 2006). A change in CO2 concentrations or PAR levels affects photosynthesis and therefore it was suggested that a metabolic compound associated to this process (i.e. a sugar) may regulate stomatal development (Coupe et al., 2006). However, there is no correlation between photosynthetic rate and stomatal index in poplar (Populus spp.; Miyazawa et al., 2006) and transgenic anti-small subunit of Rubisco tobacco (Nicotiana tabacum) plants, show reduced photosynthesis and normal responses of stomatal density and stomatal index to PAR, suggesting that other photoreceptors could be involved in this regulation (Baroli et al., 2008).Here we demonstrate that high, compared to low, R/FR ratios perceived by phyB increase stomata density, stomata index, and amphistomy in the leaves of Arabidopsis. This behavior results in an enhanced photosynthetic rate at high PAR at the expense of reduced water-use efficiency.  相似文献   

18.
The photoreceptor phytochrome is encoded by a small multigene family in higher plants. phyA encodes the well-characterized etiolated-tissue phytochrome. The product of the phyB gene, which has properties resembling those of "green tissue" phytochrome, is as yet poorly characterized. We have developed a phytochrome B overexpression system for analysis of the structure and function of this protein. Using newly generated polyclonal and monoclonal antibodies that are selective for phytochrome B, we have demonstrated high levels of expression of full-length rice and Arabidopsis phytochrome B under the control of the cauliflower mosaic virus 35S promoter in transgenic Arabidopsis. The overexpressed phytochrome is spectrally active, undergoes red/far-red-light-dependent conformational changes, is synthesized in its inactive red light-absorbing form, and is stable in the light. Overexpression of phytochrome B is tightly correlated with a short hypocotyl phenotype in transgenic seedlings. This phenotype is strictly light dependent, thus providing direct evidence that phytochrome B is a biologically functional photoreceptor. Based on similarities to phenotypes obtained by overexpression of phytochrome A, it appears that phytochromes A and B can control similar responses in the plant.  相似文献   

19.
The phytochrome B mediated light signaling integrates with various phytohormone signalings to control plant immune response. However, it is still unclear whether phyB-mediated light signaling has an effect on the biosynthesis of jasmonate during plant defense response against Botrytis cinerea. In this study, we demonstrated that phyB-mediated light signaling has a role in this process. Initially, we confirmed that phyb plants were obviously less resistant to B. cinerea while phyB overexpressing plants showed significantly enhanced resistance. We also found that the expression of numerous JA biosynthesis genes was promoted upon treatment with red or white light when compared to that of darkness, and that this promotion is dependent on phyB. Consistent with the gene expression results, phyb plants accumulated reduced pool of JA-Ile, indicating that phyB-mediated light signaling indeed increased JA biosynthesis. Further genetic analysis showed that light-mediated JAZ9 degradation and phyB-enhanced resistance were dependent on the receptor COI1, and that pif1/3/4/5 (pifq) can largely rescue the severe symptom of phyb. Taken together, our study demonstrates that phyB may participate in plant defense against B. cinerea through the modulation of the biosynthesis of JA.  相似文献   

20.
赤霉素是一类重要的植物激素,在植物整个生长发育的调控过程中起重要作用。近年来,人们发现赤霉素对拟南芥主根生长存在促进作用。本文从根系的解剖结构、赤霉素的源靶部位、促进作用的机理、赤霉素信号转导途径以及与其他激素的关系等方面,综述了赤霉素对拟南芥主根分生区和伸长区的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号