共查询到20条相似文献,搜索用时 15 毫秒
1.
A model system of experiments to consider the problem of the origin of eukaryotic cells as well as the prokaryote-to-eukaryote transition was investigated, in terms of the role of nucleic acid-membrane interactions. It was thought worthwhile to consider the importance of DNA-membrane contacts for the organization of the prokaryotic nucleoid. The model for the fusion of four proto-eukaryotic cells was proposed to clarify the prokaryote-to-eukaryote transition as well as the formation of the nuclear pores of eukaryotes from the Bayer's junctions of proto-eukaryotes. The basic requirements following from the cell fusion model suggest such orientation of the cells involved. The obstacles for division of the ancestor cell were excluded by merging. Enormous advantages to the cell metabolism due to the fusion of four proto-eukaryotic cells and an intensive growth of the inner membranous structures resulted. 相似文献
2.
Günter Schfer Martin Engelhard Volker Müller 《Microbiology and molecular biology reviews》1999,63(3):570-620
In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, Archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the molecular and mechanistic bases on which these organisms can cope with such adverse conditions. This review considers our cumulative knowledge on archaeal mechanisms of primary energy conservation, in relationship to those of bacteria and eucarya. Although the universal principle of chemiosmotic energy conservation also holds for Archaea, distinct features have been discovered with respect to novel ion-transducing, membrane-residing protein complexes and the use of novel cofactors in bioenergetics of methanogenesis. From aerobically respiring Archaea, unusual electron-transporting supercomplexes could be isolated and functionally resolved, and a proposal on the organization of archaeal electron transport chains has been presented. The unique functions of archaeal rhodopsins as sensory systems and as proton or chloride pumps have been elucidated on the basis of recent structural information on the atomic scale. Whereas components of methanogenesis and of phototrophic energy transduction in halobacteria appear to be unique to Archaea, respiratory complexes and the ATP synthase exhibit some chimeric features with respect to their evolutionary origin. Nevertheless, archaeal ATP synthases are to be considered distinct members of this family of secondary energy transducers. A major challenge to future investigations is the development of archaeal genetic transformation systems, in order to gain access to the regulation of bioenergetic systems and to overproducers of archaeal membrane proteins as a prerequisite for their crystallization. 相似文献
3.
D A Cowan 《Trends in biotechnology》1992,10(9):315-323
The Archaea, designated since 1979 as a separate Super-Kingdom (the highest taxonomic order), are a highly novel group of microorganisms which look much like bacteria but have many molecular and genetic characteristics that are more typical of eukaryotes. These unusual organisms can be conveniently divided according to their 'extreme' environmental niche, into three broad phenotypes: the thermophiles, methanogens and extreme halophiles. Each group has unique biochemical features which can be exploited for use in the biotechnological industries. The extreme molecular stability of thermophile enzymes, the novel C1 pathways of the methanogens and the synthesis of organic polymers by some halophiles are all currently or potentially valuable examples of the biotechnology of the Archaea. 相似文献
4.
Sulfolobus sulfataricus ATCC 35091, Haloferax volcanii, and Methanosarcina thermophila TM-1, representing the Euryarchaeota and Crenarchaeota subdomains of the Archaea, contain proteins which are phosphorylated on tyrosine. These data raise fundamental questions as to the origin and evolution of tyrosine phosphorylation, a protein modification that is of pivotal importance in the regulation of the physiology of eukaryotic cells. 相似文献
5.
6.
7.
The biosynthesis of dTMP has been studied in cell extracts of two different members of the domain Archaea, Methanosarcina thermophila and Sulfolobus solfataricus. In M. thermophila, the dTMP was formed from dUMP and [methylene-2H2]-5,10-methylenetetrahydrosarcinapterin generated in situ from added [methylene-2H2] formaldehyde and the tetrahydrosarcinapterin present in the cell extract. In S. solfataricus, the 5,10-methyl-enetetrahydro derivative of a synthetic fragment of sulfopterin, the modified folate present in these cells, served as the C1 donor. These data indicate that the Archaea thymidylate synthases carry out the same basic reaction which occurs in other organisms but use the 5,10-methylenetetrahydro derivatives of modified folates as C1 donors. 相似文献
8.
Comparative biochemistry of Archaea and Bacteria. 总被引:11,自引:0,他引:11
W Zillig 《Current opinion in genetics & development》1991,1(4):544-551
This review compares exemplary molecular and metabolic features of Archaea and Bacteria in terms of phylogenetic aspects. The results of the comparison confirm the coherence of the Archaea as postulated by Woese. Archaea and Bacteria share many basic features of their genetic machinery and their central metabolism. Similarities and distinctions allow projections regarding the nature of the common ancestor and the process of lineage diversification. 相似文献
9.
Diplonemid glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and prokaryote-to-eukaryote lateral gene transfer. 总被引:3,自引:0,他引:3
Lateral gene transfer refers to the movement of genetic information from one genome to another, and the integration of that foreign DNA into its new genetic environment. There are currently only a few well-supported cases of prokaryote-to-eukaryote transfer known that do not involve mitochondria or plastids, but it is not clear whether this reflects a lack of such transfer events, or poor sampling of diverse eukaryotes. One gene where this process is apparently active is glyceraldehyde-3-phosphate dehydrogenase (GAPDH), where lateral transfer has been implicated in the origin of euglenoid and kinetoplastid genes. We have characterised GAPDH genes from diplonemids, heterotrophic flagellates that are closely related to kinetoplastids and euglenoids. Two distinct classes of diplonemid GAPDH genes were found in diplonemids, however, neither class is closely related to any other euglenozoan GAPDH. One diplonemid GAPDH is related to the cytosolic gapC of eukaryotes, although not to either euglenoids or kinetoplastids, and the second is related to cyanobacterial and proteobacterial gap3. The bacterial gap3 gene in diplonemids provides one of the most well-supported examples of lateral gene transfer from a bacterium to a eukaryote characterised to date, and may indicate that diplonemids have acquired a novel biochemical capacity through lateral transfer. 相似文献
10.
Archaea and the cell cycle 总被引:5,自引:4,他引:5
Rolf Bernander 《Molecular microbiology》1998,29(4):955-961
Sequence similarity data suggest that archaeal chromosome replication is eukaryotic in character. Putative nucleoid-processing proteins display similarities to both eukaryotic and bacterial counterparts, whereas cell division may occur through a predominantly bacterial mechanism. Insights into the organization of the archaeal cell cycle are therefore of interest, not only for understanding archaeal biology, but also for investigating how components from the other two domains interact and work in concert within the same cell; in addition, archaea may have the potential to provide insights into eukaryotic initiation of chromosome replication. 相似文献
11.
K A Amiri 《Journal of bacteriology》1994,176(7):2124-2127
Fibrillarin is found in the nucleolus of Eucarya and associated with small nucleolar RNAs. It is involved in the processing of precursor rRNA. Two genes, encoding fibrillarin-like proteins from Methanococcus voltae and Methanococcus vannielii, have been isolated. The genes were named flpA (fibrillarin-like protein). 相似文献
12.
Nucleoid structure and distribution in thermophilic organisms from the Archaea domain were studied. Combined phase-contrast and fluorescence microscopy of DAPI (4',6-diamidino-2-phenylindole)-stained Sulfolobus acidocaldarius and Sulfolobus solfataricus cells revealed that the nucleoids were highly structured. Different nucleoid distribution within the cells, representing different partition stages, was observed. The conformation of the nucleoids differed between exponentially growing and stationary-phase cells. Also, the stationary-phase cells contained two chromosomes, and the nucleoids occupied a larger part of the interior of the cells than in the exponentially growing cells. The part of the cell cycle during which fully separated nucleoids could be detected was short. Since the postreplication period is long in these organisms, there was a considerable time interval between termination of chromosome replication and completion of nucleoid separation, similar to the G2 phase in eukaryotic cells. The length of the visible cell constriction period was found to be in the same range as that of eubacteria. Finally, cell-cell connections were observed under certain conditions. Possible eubacterial, eukaryotic, and unique features of nucleoid processing and cell division in thermophilic archaea are discussed. 相似文献
13.
14.
Archaea, members of the third domain of life, are bacterial-looking prokaryotes that harbour many unique genotypic and phenotypic properties, testifying for their peculiar evolutionary status. The archaeal ancestor was probably a hyperthermophilic anaerobe. Two archaeal phyla are presently recognized, the Euryarchaeota and the Crenarchaeota. Methanogenesis was the main invention that occurred in the euryarchaeal phylum and is now shared by several archaeal groups. Adaptation to aerobic conditions occurred several times independently in both Euryarchaeota and Crenarchaeota. Recently, many new groups of Archaea that have not yet been cultured have been detected by PCR amplification of 16S ribosomal RNA from environmental samples. The phenotypic and genotypic characterization of these new groups is now a top priority for further studies on archaeal evolution. 相似文献
15.
In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the molecular and mechanistic bases on which these organisms can cope with such adverse conditions. This review considers our cumulative knowledge on archaeal mechanisms of primary energy conservation, in relationship to those of bacteria and eucarya. Although the universal principle of chemiosmotic energy conservation also holds for Archaea, distinct features have been discovered with respect to novel ion-transducing, membrane-residing protein complexes and the use of novel cofactors in bioenergetics of methanogenesis. From aerobically respiring archaea, unusual electron-transporting supercomplexes could be isolated and functionally resolved, and a proposal on the organization of archaeal electron transport chains has been presented. The unique functions of archaeal rhodopsins as sensory systems and as proton or chloride pumps have been elucidated on the basis of recent structural information on the atomic scale. Whereas components of methanogenesis and of phototrophic energy transduction in halobacteria appear to be unique to archaea, respiratory complexes and the ATP synthase exhibit some chimeric features with respect to their evolutionary origin. Nevertheless, archaeal ATP synthases are to be considered distinct members of this family of secondary energy transducers. A major challenge to future investigations is the development of archaeal genetic transformation systems, in order to gain access to the regulation of bioenergetic systems and to overproducers of archaeal membrane proteins as a prerequisite for their crystallization. 相似文献
16.
The impact of heavy-metal contamination on archaean communities was studied in soils amended with sewage sludge contaminated with heavy metals to varying extents. Fluorescent in situ hybridization showed a decrease in the percentage of Archaea from 1.3% +/- 0.3% of 4', 6-diamidino-2-phenylindole-stained cells in untreated soil to below the detection limit in soils amended with heavy metals. A comparison of the archaean communities of the different plots by denaturing gradient gel electrophoresis revealed differences in the structure of the archaean communities in soils with increasing heavy-metal contamination. Analysis of cloned 16S ribosomal DNA showed close similarities to a unique and globally distributed lineage of the kingdom Crenarchaeota that is phylogenetically distinct from currently characterized crenarchaeotal species. 相似文献
17.
The archaeal DNA replication machinery bears striking similarity to that of eukaryotes and is clearly distinct from the bacterial apparatus. In recent years, considerable advances have been made in understanding the biochemistry of the archaeal replication proteins. Furthermore, a number of structures have now been obtained for individual components and higher-order assemblies of archaeal replication factors, yielding important insights into the mechanisms of DNA replication in both archaea and eukaryotes. 相似文献
18.
19.
In the past two years, archaeal genomics has achieved several breakthroughs. On the evolutionary front the most exciting development was the sequencing and analysis of the genome of Nanoarchaeum equitans, a tiny parasitic organism that has only approximately 540 genes. The genome of Nanoarchaeum shows signs of extreme rearrangement including the virtual absence of conserved operons and the presence of several split genes. Nanoarchaeum is distantly related to other archaea, and it has been proposed to represent a deep archaeal branch that is distinct from Euryarchaeota and Crenarchaeota. This would imply that many features of its gene repertoire and genome organization might be ancestral. However, additional genome analysis has provided a more conservative suggestion - that Nanoarchaeum is a highly derived euryarchaeon. Also there have been substantial developments in functional genomics, including the discovery of the elusive aminoacyl-tRNA synthetase that is involved in both the biosynthesis of cysteine and its incorporation into proteins in methanogens, and the first experimental validation of the predicted archaeal exosome. 相似文献
20.