首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Triple-negative breast cancer (TNBC) has been reported to be correlated with high expression of proliferation markers as well as constitutive activation of metastasis-relevant signaling pathways. For many years, breast cancer researchers have been investigating specific and effective methods to treat or to control the development of TNBC, but promising therapeutic options remain elusive. In this study, we have demonstrated that alkylamide derivatives of bexarotene DK-1–150 and DK-1–166 induce apoptotic cell death in TNBC cell lines without causing cytotoxicity in the normal mammary epithelial cell line. Furthermore, the bexarotene derivatives also showed significant effects in inhibiting TNBC cell proliferation and migration, modulating cancer stem cell markers expressions, as well as limiting the epithelial-mesenchymal transition (EMT) activities of TNBC cell lines in terms of downregulating EMT marker and blocking nuclear translocation of β-catenin. Therefore, we propose the alkylamide derivatives of bexarotene as potential candidates for novel anticancer therapeutics against TNBC.  相似文献   

3.
Cancer cells alter regular metabolic pathways in order to sustain rapid proliferation. One example of metabolic remodeling in cancerous tissue is the upregulation of pyruvate kinase isoenzyme M2 (PKM2), which is involved in aerobic glycolysis. Indeed, PKM2 has previously been identified as a tumor biomarker and as a potential target for cancer therapy. Here, we examined the effects of combined treatment with doxorubicin and anti-PKM2 small interfering RNA (siRNA) on triple-negative breast cancer (TNBC). The suppression of PKM2 resulted in changes in glucose metabolism, leading to decreased synthesis of adenosine triphosphate (ATP). Reduced levels of ATP resulted in the intracellular accumulation of doxorubicin, consequently enhancing the therapeutic efficacy of this drug in several triple-negative breast cancer cell lines. Furthermore, the combined effect of PKM2 siRNA and doxorubicin was evaluated in an in vivo MDA-MB-231 orthotopic breast cancer model. The siRNA was systemically administered through a polyethylenimine (PEI)-based delivery system that has been extensively used. We demonstrate that the combination treatment showed superior anticancer efficacy as compared to doxorubicin alone. These findings suggest that targeting PKM2 can increase the efficacy of chemotherapy, potentially providing a new approach for improving the outcome of chemotherapy in patients with TNBC.  相似文献   

4.
5.
6.
Immune infiltration is reported to be highly associated with tumor progress. Since butyrophilin subfamily 3 member A2 (BTN3A2) serves as a crucial mediator in immune activation, we aimed to investigate the correlation of BTN3A2 in immune infiltration and tumor prognosis via extensive-cancer analysis. The levels of BTN3A2 expression in extensive cancers were analyzed with Oncomine and TIMER databases. Univariate cox and multivariate cox regression analyses were conducted to assess the associations of BTN3A2 to prognosis of various cancers. The correlations of BTN3A2 with immune infiltration were assessed by TIMER database. It suggested that BTN3A2 was a potential prognosis signature for breast cancer (BRCA) and ovarian cancer (OV). However, immune infiltrations were highly correlated with BTN3A2 in triple-negative breast cancer (TNBC), compared with OV and other subtypes of BRCA. Multivariate cox regression analysis revealed that BTN3A2 was an independently prognostic signature of TNBC, as well as weighted correlation network analysis suggested BTN3A2 was only correlated with TNBC, rather than other subtypes of BRCA. Immune cell subtypes correlation analysis showed that BTN3A2 was highly correlated with general T, CD8+ T, T helper type 1, exhausted T cells, and dendritic cells in TNBC. And the coexpression geneset of BTN3A2 was mainly involved in T-cell receptor interaction and the nuclear factor-κB (NF-κB) signaling pathway. Collectively, BTN3A2 that was positively associated with better prognosis could be served as a special diagnostic and independently prognostic marker for TNBC by regulating the T-cell receptor interaction and NF-κB signaling pathways.  相似文献   

7.
Triple-negative breast cancer (TNBC) has attracted more attention compared with other breast cancer subtypes due to its aggressive nature, poor prognosis, and chemotherapy remains the mainstay of treatment with no other approved targeted therapy. Therefore, the study aimed to discover more promising therapeutic targets and investigating new insights of biological mechanism of TNBC. Six microarray data sets consisting of 463 non-TNBC and 405 TNBC samples were mined from Gene Expression Omnibus. The data sets were integrated by meta-analysis and identified 1075 differentially expressed genes. Protein-protein interaction network was constructed which consists of 486 nodes and 1932 edges, where 29 hub genes were obtained with high topological measures. Further, 16 features (hub genes), 12 upregulated (AURKB, CCNB2, CDC20, DDX18, EGFR, ENO1, MYC, NUP88, PLK1, PML, POLR2F, and SKP2) and four downregulated ( CCND1, GLI3, SKP1, and TGFB3) were selected through machine learning correlation based feature selection method on training data set. A naïve Bayes based classifier built using the expression profiles of 16 features (hub genes) accurately and reliably classify TNBC from non-TNBC samples in the validation test data set with a receiver operating curve of 0.93 to 0.98. Subsequently, Gene Ontology analysis revealed that the hub genes were enriched in mitotic cell cycle processes and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that they were enriched in cell cycle pathways. Thus, the identified key hub genes and pathways highlighted in the study would enhance the understanding of molecular mechanism of TNBC which may serve as potential therapeutic target.  相似文献   

8.
Overexpression of the erbB-2 gene contributes to aggressive behavior of various human adenocarcinomas, including breast cancer, through an unknown molecular mechanism. The erbB-2-encoded protein is a member of the ErbB family of growth factor receptors, but no direct ligand of ErbB-2 has been reported. We show that in various cells ErbB-2 can form heterodimers with both EGF receptor (ErbB-1) and NDF receptors (ErbB-3 and ErbB-4), suggesting that it may affect the action of heterologous ligands without the involvement of a direct ErbB-2 ligand. This possibility was addressed in breast cancer cells through either overexpression of ErbB-2 or by blocking its delivery to the cell surface by means of an endoplasmic reticulum-trapped antibody. We report that ErbB-2 overexpression enhanced binding affinities to both EGF and NDF, through deceleration of ligand dissociation rates. Likewise, removal of ErbB-2 from the cell surface almost completely abolished ligand binding by accelerating dissociation of both growth factors. The kinetic effects resulted in enhancement and prolongation of the stimulation of two major cytoplasmic signaling pathways, namely: MAP kinase (ERK) and c-Jun kinase (SAPK), by either ligand. Our results imply that ErbB-2 is a pan-ErbB subunit of the high affinity heterodimeric receptors for NDF and EGF. Therefore, the oncogenic action of ErbB-2 in human cancers may be due to its ability to potentiate in trans growth factor signaling.  相似文献   

9.
Modification by ubiquitin plays a major role in a broad array of cellular functions. Although reversal of this process, deubiquitination, likely represents an important regulatory step contributing to cellular homeostasis, functions of deubiquitination enzymes still remain poorly characterized. We have previously shown that the ubiquitin protease Ubp3p requires a co-factor, Bre5p, to specifically deubiquitinate the coat protein complex II (COPII) subunit Sec23p, which is involved in anterograde transport between endoplasmic reticulum and Golgi compartiments. In the present report, we show that disruption of BRE5 gene also led to a defect in the retrograde transport from the Golgi to the endoplasmic reticulum. Further analysis indicate that the COPI subunit beta'-COP represents another substrate of the Ubp3p.Bre5p complex. All together, our results indicate that the Ubp3p.Bre5p deubiquitination complex co-regulates anterograde and retrograde transports between endoplasmic reticulum and Golgi compartments.  相似文献   

10.
Qi Y  Fu X  Xiong Z  Zhang H  Hill SM  Rowan BG  Dong Y 《PloS one》2012,7(2):e31539
A major challenge in breast cancer therapy is the lack of an effective therapeutic option for a particularly aggressive subtype of breast cancer, triple-negative breast cancer. Here we provide the first preclinical evidence that a second-generation selenium compound, methylseleninic acid, significantly enhances the anticancer efficacy of paclitaxel in triple-negative breast cancer. Through combination-index value calculation, we demonstrated that methylseleninic acid synergistically enhanced the growth inhibitory effect of paclitaxel in triple-negative breast cancer cells. The synergism was attributable to more pronounced induction of caspase-mediated apoptosis, arrest of cell cycle progression at the G2/M checkpoint, and inhibition of cell proliferation. Treatment of SCID mice bearing MDA-MB-231 triple-negative breast cancer xenografts for four weeks with methylseleninic acid (4.5 mg/kg/day, orally) and paclitaxel (10 mg/kg/week, through intraperitoneal injection) resulted in a more pronounced inhibition of tumor growth compared with either agent alone. The attenuated tumor growth correlated with a decrease in tumor cell proliferation and an induction of apoptosis. The in vivo study also indicated the safety of using methylseleninic acid in the combination regime. Our findings thus provide strong justification for the further development of methylseleninic acid and paclitaxel combination therapy for the treatment of triple-negative breast cancer.  相似文献   

11.
Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.  相似文献   

12.
In routine practice, nuclear pleomorphism of tumours is assessed by haematoxylin staining of the membrane-bound heterochromatin. However, decoration of the nuclear envelope (NE) through the immunofluorescence staining of NE proteins such as lamin B and emerin can provide a more objective appreciation of the nuclear shape. In breast cancer, nuclear pleomorphism is one of the least reproducible parameters to score histological grade, thus we sought to use NE proteins to improve the reproducibility of nuclear grading. First, immuno-fluorescence staining of NE as well as confocal microscopy and three-dimensional reconstruction of nuclei in cultured cells showed a smooth and uniform NE of normal breast epithelium in contrast to an irregular foldings of the membrane and the presence of deep invaginations leading to the formation of an intranuclear scaffold of NE-bound tubules in breast cancer cells. Following the above methods and criteria, we recorded the degree of NE pleomorphism (NEP) in a series of 273 invasive breast cancers tested by immunofluorescence. A uniform nuclear shape with few irregularities (low NEP) was observed in 135 cases or, alternatively, marked folds of the NE and an intranuclear tubular scaffold (high NEP cases) were observed in 138 cases. The latter features were significantly correlated (P-value <0.002) with lymph node metastases in 54 histological grade 1 and in 173 cancers with low mitotic count. Decoration of the NE might thus be regarded as a novel diagnostic parameter to define the grade of malignancy, which parallels and enhances that provided by routine histological procedures.  相似文献   

13.
三阴性乳腺癌是乳腺癌中恶性程度最高的亚型,其治疗仍以化疗为主,但容易出现耐药,且患者预后较差。随着蛋白质组学技术的发展,磷酸化蛋白质组学研究取得了长足的进步,并在肿瘤发生发展机制和诊治研究中得到了广泛的应用。同样,磷酸化蛋白质组学在三阴性乳腺癌的发生发展、靶向治疗和耐药机制研究等方面也发挥着重要作用。本文主要对目前磷酸化蛋白质组学在三阴性乳腺癌中的研究进展进行综述,旨在为基于磷酸化蛋白质组学的三阴性乳腺癌发生发展机制和诊治研究提供指导和帮助。  相似文献   

14.
Since both tumor cells and host immune cell repertoires are diverse and heterogeneous, immune responses against tumor-associated antigens should differ substantially among individual cancer patients. Selection of suitable peptide vaccines for individual patients based on the preexisting host immunity before vaccination could induce potent anti-tumor responses that provide clinical benefit to cancer patients. We have developed a novel immunotherapeutic approach of personalized peptide vaccination (PPV) in which a maximum of four human leukocyte antigen (HLA) class IA-matched peptides are selected for vaccination among pooled peptides on the basis of both HLA class IA type and the preexisting host immunity before vaccination. In this review, we discuss our recent results of preclinical and clinical studies of PPV for various types of advanced cancer.  相似文献   

15.
Triple-negative breast cancers (TNBCs) account for approximately 15% of breast cancer cases and exhibit an aggressive clinical behavior. In this study, we designed and synthesized two series of 2-anilinopyrimidines based on the structure of our previously reported compound 1 that act as a selective inhibitor of the basal-like TNBC cell line MDA-MB-468. Through the fine-tuning of 1, cyclic and acyclic amines at 4-position of the pyrimidine core were turned out to be crucial for the selectivity. An extensive analysis of structure-activity relationships of the analogs revealed that aminoalkyl groups at the end of the propyl chain are amenable to modification. Among the newly synthesized analogs, compound 38, bearing 4-chloropiperidinyl and cyclohexyl groups, was found to be the most potent and selective, and was about three times more potent and selective than 1 was against the TNBC cells.  相似文献   

16.
An increasing amount of evidence has proven the vital role of circular RNAs (circRNAs) in cancer progression. However, there remains a dearth of knowledge on the function of circRNAs in triple-negative breast cancer (TNBC). Utilizing a circRNA microarray dataset, four circRNAs were identified to be abnormally expressed in TNBC. Among them, circBACH2 was most significantly elevated in TNBC cancerous tissues and its high expression was positively correlated to the malignant progression of TNBC patients. In normal human mammary gland cell line, the overexpression of circBACH2 facilitated epithelial to mesenchymal transition and cell proliferation. In TNBC cell lines, circBACH2 knockdown suppressed the malignant progression of TNBC cells. Mechanistically, circBACH2 sponged miR-186-5p and miR-548c-3p, thus releasing the C-X-C chemokine receptor type 4 (CXCR4) expression. The interference of miR-186-5p/miR-548c-3p efficiently promoted the cell proliferation, migration, and invasion suppressed by circBACH2 knockdown in the TNBC cell lines. Finally, circBACH2 knockdown repressed the growth and lung metastasis of TNBC xenografts in nude mice. In summary, circBACH2 functions as an oncogenic circRNA in TNBC through a novel miR-186-5p/miR-548c-3p/CXCR4 axis.Subject terms: Cancer, Cell biology  相似文献   

17.
The cell membrane receptor ErbB-2 migrates to the nucleus. However, the mechanism of its nuclear translocation is unclear. Here, we report a novel mechanism of its nuclear localization that involves interaction with the transport receptor importin beta1, nuclear pore protein Nup358, and a host of players in endocytic internalization. Knocking down importin beta1 using small interfering RNA oligonucleotides or inactivation of small GTPase Ran by RanQ69L, a dominant-negative mutant of Ran, causes a nuclear transport defect of ErbB-2. Mutation of a putative nuclear localization signal in ErbB-2 destroys its interaction with importin beta1 and arrests nuclear translocation, while inactivation of nuclear export receptor piles up ErbB-2 within the nucleus. Additionally, blocking of internalization by a dominant-negative mutant of dynamin halts its nuclear localization. Thus, the cell membrane-embedded ErbB-2, through endocytosis using the endocytic vesicle as a vehicle, importin beta1 as a driver and Nup358 as a traffic light, migrates from the cell surface to the nucleus. This novel mechanism explains how a receptor tyrosine kinase on the cell surface can be translocated into the nucleus. This pathway may serve as a general mechanism to allow direct communication between cell surface receptors and the nucleus, and our findings thus open a new era in understanding direct trafficking between the cell membrane and nucleus.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号