首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
1.  Spectrophotometric and paper chromatographic analyses have been made of pigments in the summer phytoplankton of eight lakes that widely differ in trophic characteristics.
2.  A comparison has been made between Margalef's pigment ratio, the carotenoid/chlorophyll-a ratio, the pigment diversity expressed as the number of coloured spots on a paper chromatogram, and the pigment diversity calculated by using the Shannon formula.
3.  No evidence has been found for an increase of diversity of phytoplankton pigments along a gradient from eutrophic towards oligotrophic lakes.
4.  Pigment diversity cannot be simply used as a measure of lake maturity according to Margalef's ideas.
  相似文献   

2.
The aim of this study was to compare vertical and seasonal variationsof inorganic carbon allocation into macromolecules by the phytoplanktonpopulation in a eutrophic lake (Lake Aydat) and an oligo-mesotrophiclake (Lake Pavin). Biochemical fractionation was conducted byconsecu tive differential extractions in order to separate proteins,polysaccharides, lipids, and low molecular weight compounds(LMW). The ratio of light absorption at480 and 665 nm by acetoneextracts of phytoplankton pigments was used as an indicatorof the nutritional statusof natural phytoplankton populations.Our results show that in Lake Aydat, the main photosyntheticend productswere poly saccharides, whereas in Lake Pavin, radioactivitywas predominantly incorporated into the protein fraction. Moreover,the seasonal cycles of mixing and stratification in these twolakes affected the pattern of 14C incorporation into LMW andmacromolecules. An increase in the relative synthesis of proteinsoccurred during stratification periods. It was linked to anincrease in temperature and nutrient limitation further complicatedby the shift in species composition of the populations. Differences recorded both between the two lakes of different trophicstatus and between seasons confirm that the proportion of carbonincorporated into proteins might be a useful indicator of thephysio logical status of phvtoplankton communities.  相似文献   

3.
This study describes the metabolism and structure of phytoplanktoncommunities during seasonal periodicity and discusses strategiesof development adopted by species during succession. The studywas conducted in two trophically different lakes. Each lakedemonstrates a different degree of the ecological succession,which prescribes an increasingly complex taxocenose. In oligomesotrophicLake Pavin the autogenic succession lasts from spring overturnuntil mid-summer. In eutrophic Lake Aydat the autogenic successionis strictly limited to spring. The seasonal changes of the communityproductivity, turnover rate (P/B) and adenylate energy chargeconfirm the hypothesis of a change of the ‘metabolic orientation’of phytoplankton cells during seasonal succession. The autogenicsuccession represents the progression from a growth-orientedstrategy to an equilibrium-oriented one.  相似文献   

4.
Seasonal nutrient enrichment experiments (short-term bioassays) were conducted in three Florida lakes of different trophic states to determine the effects of addition of various nutrient combinations upon chlorophyll a and phytoplankton standing crops. Nutrient enriched surface water samples with crustacean zooplankton removed were incubated in situ in clear polyethylene bags for 3 to 6 days. The 25 factorial design employed two levels (ambient and enriched) of each of five nutrients [NH4 +, PO inf4 sup3− , Fe -EDTA, SiO inf3 sup2− and a cation (Ca2+ or K+) or trace elements]. Ammonium produced significant increases in chlorophyll a and phytoplankton standing crops in all experiments. Phosphate produced similar results in the mesotrophic lake, but the eutrophic lakes had both positive and nonsignificant responses which varied seasonally between lakes. Iron increased chlorophyll a in most experiments but affected total phytoplankton standing crop only during the summer and fall. Silicon had negative effects in some experiments. Cations and trace elements produced marked differences between lakes for chlorophyll a, but total phytoplankton standing crop showed few significant responses. Synergistic responses to two- and three-factor interactions were observed in all lakes. Differences in the responses of phytoplankton taxonomic divisions to enrichment may be responsible for much of the between lake variation in chlorophyll a and total phytoplankton volume responses. Nutrient limitations in these lakes are discussed and related to limnological factors and predictive models.  相似文献   

5.
Nine lakes in northern Wisconsin were sampled from February through September 1996, and HPLC analysis of water column pigments was carried out on epilimnetic seston. Pigment distributions were evaluated throughout the water column during summer in Crystal Lake and Little Rock Lake. The purpose of our study was to investigate the use of phytopigments as markers of the main taxonomic groups of algae. As a first approach, multiple regression of marker pigments against chlorophyll a (chl a) was used to derive the best linear combination of the main xanthophylls (peridinin, fucoxanthin, alloxanthin, lutein, and zeaxanthin). A significant regression equation (r2= 0.98) was obtained for epilimnion data. The good fit indicates that the chl a:xanthophyll ratios were fairly constant in the epilimnion of the nine lakes over time. Chlorophyll a recalculated from the main xanthophylls in each sample showed good agreement with measured chl a in epilimnetic waters. A second approach used the CHEMTAX program to analyze the same data set. CHEMTAX provided estimates of chl a biomass for all algal classes and allowed distinction between diatoms and chrysophytes, and between chlorophytes and euglenophytes. These results showed a reasonably good agreement with biomass estimates from microscope counts, despite uncertainties associated with differences in sampling procedure. Changes of pigment ratios over time in the epilimnetic waters were also investigated, as well as differences between surface and deep samples of Little Rock Lake and Crystal Lake. We found evidence that changes in the ratio of photoprotective pigments to chl a occurred as a response to changes in light climate. Changes were also observed for certain light‐harvesting pigments. The comparison between multiple regression and CHEMTAX analyses for inferring chl a biomass from concentrations of marker pigments highlighted the need to take account of variations in pigment ratio, as well as the need to acquire additional data on the pigment composition of planktonic algae.  相似文献   

6.
7.
1. We studied driving forces shaping phytoplankton assemblages in two subtropical plateau lakes with contrasting trophic status, the oligotrophic deep Lake Fuxian and the eutrophic shallow Lake Xingyun. 2. Phytoplankton samples were taken monthly for a year and phytoplankton species were sorted into the main taxonomic groups and associations proposed by Reynolds. A canonical correspondence analysis (CCA) was used to test the occurrence of these classification schemes and to determine their discriminatory power. 3. The results suggest that the major driving forces in Lake Fuxian were physical variables, and particularly the underwater light climate, whereas, nutrients were the important driving force in Lake Xingyun. 4. Top–down control through zooplankton grazing in Lake Fuxian was hardly ever a significant determinant itself, because of the scarcity of zooplankton and their low grazing efficiency of predation while a dominance of inedible cyanobacteria throughout the year rendered top–down controls ineffective failing in Lake Xingyun. Hence phytoplankton communities in both lakes appear to be regulated primarily by bottom–up controls.  相似文献   

8.
Comparative studies on the limnology, species diversity and standing stock biomass of phytoplankton and zooplankton in five freshwater lakes, Naivasha and Oloidien, Ruiru, Masinga and Nairobi reservoirs, were undertaken. Phytoplankton chlorophyll a, dissolved oxygen and temperature were also measured. Thermocyclops oblongatus (Copepoda) was dominant in all the lakes. Ceriodaphnia cornuta and Diaphanosoma excisum (Cladocera) dominated in lakes Naivasha and Oloiden, whereas in Ruiru, Masinga and Nairobi reservoirs, Brachionus angularis and Hexarthra mira (Rotifera) were the dominant zooplankters. Phytoplankton biomass as chlorophyll a was lowest in Ruiru dam 5.64 ± 4.0 µg l-1 and highest in the eutrophic Nairobi dam 71.5 ± 12.02 µg l-1. The endorheic lakes Naivasha and Oloidien showed medium values of 24.5 ± 4.0 µg l-1.  相似文献   

9.
Irina Trifonova 《Hydrobiologia》1993,249(1-3):93-100
Seasonal succession of phytoplankton biomass, its diversity and its photosynthetic activity in two highly eutrophic lakes have been compared. In order to test the intermediate disturbance hypothesis, the lakes have been chosen with almost the same level of trophy but different conditions of stratification, through two ice-free periods of open water with different weather conditions.High phytoplankton diversity throughout the period of investigation was characteristic for the shallower Lake Lobardzu. The number of species here was usually more than 30 and the Shannon diversity changed from 1.2 to 4.2. Owing to the frequent external disturbances, periods characterized by autogenic succession with establishing dominance and declining diversity alternated with periods of biomass reduction and rises of diversity and photosynthetic activity. In the warmer summer of 1983, with more intense warming of bottom layers and predominance of blue-greens, phytoplankton biomass was higher and diversity lower than in the cold summer of 1982.In stratified Lake Rudusku, phytoplankton diversity and number of species were usually much lower. During the long summer stratification up to three-four dominant species of blue-greens and dinoflagellates become established and competitive exclusion leading to low diversity advanced. Some changes in biomass and diversity, were caused by zooplankton activity.  相似文献   

10.
Ulf Heyman 《Hydrobiologia》1983,101(1-2):89-103
Production and biomass values from phytoplankton populations in four different Swedish lakes were analysed. The production in all lakes was directly proportional to biomass during homothermal periods. When the lakes were stratified there was a strong negative relation between specific growth rate and biomass. The data fitted to a logistic density dependent growth equation of the form: dB/ dt = µmB(1-B · K–1) where B is the biomass, µm the maximum specific growth rate and K the carrying capacity. The equation was used to derive the parameters µ · µm –1 and carrying capacity (the maximum possible biomass). These parameters were then discussed in relation to light climate, phosphorus concentration and humic content.  相似文献   

11.
Factors influencing hydrocarbon degradation in three freshwater lakes   总被引:3,自引:1,他引:2  
The mixed microbial flora of 3 lakes in Ohio with differing histories of hydrocarbon pollution was examined in relation to the ability to use hydrocarbons. Weathered kerosene was spiked with naphthalene, pristane, 1,13-tetradecadiene, andn-hexadecane and added to water-sediment mixtures from the 3 lakes, and utilization of the 4 marker hydrocarbons was measured. Each of the marker hydrocarbons was metabolized; naphthalene was the most readily used and pristane was the most resistant. Values for dissolved oxygen suggest that oxygen did not limit hydrocarbon degradation in the water column at any site examined. Nutrient addition studies indicated that nitrogen and phosphorus limited hydrocarbon degradation at all sites examined. Maximum numbers of heterotrophic bacteria were detected when the water temperature was 10°C or higher. The data indicate that temperature limits hydrocarbon degradation in the winter, except at a site which had been impacted by an oil spill and which received chronic inputs of hydrocarbons and nutrients. In samples from that site, all 4 marker hydrocarbons were degraded at 0°C. Results of temperature and nutrient-addition experiments suggest that different seasonal populations of hydrocarbon users are selected at that site, but not at other lake sites.  相似文献   

12.
13.
14.
We hypothesised that increasing winter affluence and summer temperatures, anticipated in southern Europe with climate change, will deteriorate the ecological status of lakes, especially in those with shorter retention time. We tested these hypotheses analysing weekly phytoplankton and chemistry data collected over 2 years of contrasting weather from two adjacent stratified lakes in North Italy, differing from each other by trophic state and water retention time. Dissolved oxygen concentrations were higher in colder hypolimnia of both lakes in the second year following the cold winter, despite the second summer was warmer and the lakes more strongly stratified. Higher loading during the rainy winter and spring increased nutrient (N, P, Si) concentrations, and a phytoplankton based trophic state index, whilst the N/P ratio decreased in both lakes. The weakened Si limitation in the second year enabled an increase of diatom biovolumes in spring in both lakes. Chlorophyll a concentration increased in the oligo-mesotrophic lake, but dropped markedly in the eutrophic lake where the series of commonly occurring cyanobacteria blooms was interrupted. The projected increase of winter precipitation in southern Europe is likely to increase the nutrient loadings to lakes and contribute to their eutrophication. The impact is proportional to the runoff/in-lake concentration ratio of nutrients rather than to the retention time, and is more pronounced in lakes with lower trophy.  相似文献   

15.
The genetic diversity of picoeukaryotes (0.2-5.0 μm) was investigated in 8 lakes differing in trophic status in Nanjing, China. Denaturing gradient gel electrophoresis (DGGE) and cloning and sequencing of 18S rRNA genes were applied to analyze the picoeukaryotic communities. DGGE analysis showed that among the 8 lakes, the diversity of picoeukaryotes was greatest in the mesotrophic Lake Nan (24 bands) and least in the oligotrophic Lake Qian (12 bands). Cluster analysis of DGGE profiles revealed that the 8 lakes were grouped into 2 distinct clusters. Cluster 1 contained lakes Mochou, Zixia, Huashen, Nan, Pipa, and Qian, while cluster 2 contained lakes Xuanwu and Baijia. Clone libraries were constructed from the mesotrophic Lake Xuanwu and the oligotrophic Lake Zixia, and the 2 libraries were compared using the program LIBSHUFF. This analysis indicated that the picoeukaryotic community composition differed significantly between the 2 lakes (p = 0.001). A total of 25 operational taxonomic units were detected; 18 (62 clones) were related to known eukaryotic groups, while 7 (30 clones) were not affiliated with any known eukaryotic group. Alveolates and stramenopiles were the dominant groups in Lake Xuanwu, while alveolates and chlorophyta predominated in Lake Zixia. Multivariate statistical analysis indicated that the differences in the picoeukaryotic community composition of the 8 lakes might be related to trophic status and top-down regulation by metazooplankton.  相似文献   

16.
The bacterioplankton assemblages of eight maritime Antarctic lakes with a wide range of trophic status and geographic span (six lakes from Hope Bay, Antarctic Peninsula and two from Potter Peninsula, King George Island) were described using denaturing gradient gel electrophoresis and band sequencing during two consecutive austral summers (2003–2004). Analyses of the gels identified a total of 230 bands spread across 57 different positions. Among those bands, 14 were shared between lakes from Hope Bay and Potter Peninsula, 17 were observed only in particular lakes, and 17 were registered both years in the same lake. We successfully reamplified and sequenced 43 bands located in 36 different positions belonging to Bacteroidetes, Actinobacteria, Betaproteobacteria and Cyanobacteria. The closest matches for 63% of the sequenced bands were from Antarctic or from other cold environment clones and sequences already in the databases, suggesting the widespread dominance of microbial communities adapted to cold habitats. The results of the multivariate analyses (Cluster Analysis and CCA) indicated that the nutrient status of the lake influences the bacterioplankton assemblages. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Small eukaryotes, cells with a diameter of less than 5 mum, are fundamental components of lacustrine planktonic systems. In this study, small-eukaryote diversity was determined by sequencing cloned 18S rRNA genes in three libraries from lakes of differing trophic status in the Massif Central, France: the oligotrophic Lake Godivelle, the oligomesotrophic Lake Pavin, and the eutrophic Lake Aydat. This analysis shows that the least diversified library was in the eutrophic lake (12 operational taxonomic units [OTUs]) and the most diversified was in the oligomesotrophic lake (26 OTUs). Certain groups were present in at least two ecosystems, while the others were specific to one lake on the sampling date. Cryptophyta, Chrysophyceae, and the strictly heterotrophic eukaryotes, Ciliophora and fungi, were identified in the three libraries. Among the small eukaryotes found only in two lakes, Choanoflagellida and environmental sequences (LKM11) were not detected in the eutrophic system whereas Cercozoa were confined to the oligomesotrophic and eutrophic lakes. Three OTUs, linked to the Perkinsozoa, were detected only in the Aydat library, where they represented 60% of the clones of the library. Chlorophyta and Haptophyta lineages were represented by a single clone and were present only in Godivelle and Pavin, respectively. Of the 127 clones studied, classical pigmented organisms (autotrophs and mixotrophs) represented only a low proportion regardless of the library's origin. This study shows that the small-eukaryote community composition may differ as a function of trophic status; certain lineages could be detected only in a single ecosystem.  相似文献   

18.
1. We used first‐order kinetic parameters of biological oxygen demand (BOD), the constant of aerobic decomposition (k) and the asymptotic value of BOD (BODult), to characterise the lability of organic carbon pools in six lakes of different trophic state: L. Naroch, L. Miastro and L. Batorino (Belarus), L. Kinneret (Israel), L. Ladoga (Russia) and L. Mendota (U.S.A.). The relative contributions of labile and refractory organic carbon fractions to the pool of total organic carbon (TOC) in these lakes were quantified. We also determined the amounts of labile organic carbon within the dissolved and particulate TOC pools in the three Belarus lakes. 2. Mean annual chlorophyll concentrations (used as a proxy for lake trophic state) ranged from 2.3 to 50.6 μg L−1, labile organic carbon (OCL = 0.3BODult) from 0.75 to 2.95 mg C L−1 and k from 0.044 to 0.14 day−1. 3. Our data showed that there were greater concentrations of OCL but lower k values in more productive lakes. 4. In all cases, the DOC fraction dominated the TOC pool. OCL was a minor component of the TOC pool averaging about 20%, irrespective of lake trophic state. 5. In all the lakes, most (c. 85%) of the DOC pool was refractory, corresponding with published data based on measurements of bacterial production and DOC depletion. In contrast, a larger fraction (27–55%) of the particulate organic carbon (POC) pool was labile. The relative amount of POC in the TOC pool tended to increase with increasing lake productivity. 6. Long‐term BOD incubations can be valuable in quantifying the rates of breakdown of the combined particulate and dissolved organic carbon pools and in characterising the relative proportions of the labile and recalcitrant fractions of these pools. If verified from a larger number of lakes our results could have important general implications.  相似文献   

19.
Newrkla  P.  Gunatilaka  A. 《Hydrobiologia》1982,91(1):531-536
Benthic community respiration rates of profundal sediments of Fuschlsee (37.6 mg · O2 · m–2 · h–1 — eutrophic), Mondsee (40.19 mg · O2 · m–2 · h–1 — eutrophic) and Attersee (11.5 mg · O2 · m–2 · h–1 — oligo-mesotrophic) were measuredin situ, and in cores. By exposing the sediments to different oxygen levels in the laboratory it was found that benthic community metabolism reduced with decreasing oxygen concentrations. The slope of the regression lines, relating oxygen uptake rates to oxygen concentrations, differed significantly for the different sites investigated. These results were closely related to the trophic conditions of the lakes.  相似文献   

20.
Species composition and diversity of phytoplankton were studied for several years in two lakes which differ with respect to mixing conditions and nutrient limitation: Schlachtensee regularly stratifies very stably. In contrast, size and wind-exposure predispose Lake Tegel to deeper mixing; additionally, stratification is artificially destabilized by aeration. As the duration of aeration was varied, the study period includes interannual changes in mixing conditions. For both lakes, it also covers trophic change due to restoration; this was especially pronounced in Schlachtensee.Results show that mixing conditions affect species composition on two levels: on a superordinate level, lake morphology or hydrology govern stability of stratification and susceptibility to perturbation, and hence the extent to which motile species can develop. In Schlachtensee, species with some means of actively seeking preferred depths usually dominated during summer stratification: Planktothrix agardhii during the hypertrophic phase, and flagellates since restoration. In contrast, in Lake Tegel deeper mixing as a generally prevailing condition favored non-motile species. Their seasonal pattern was remarkably constant from year to year. Although changes in the extent of mixing were pronounced during the four years studied (1987–1990), these were within a range that affected species composition only slightly: in summer, cyanobacteria and diatoms represented climax species whose dominance was not offset by additional, weather-induced increases of turbulence.On a subordinate level, and within the constraints set by nutrient limitation as well as by grazing pressure, small-scale changes in mixing conditions caused by meteorological cycles were shown to strongly affect species composition and in consequence diversity: Results for the fouryear post-restoration study period at Schlachtensee show that considerable interannual variations of species composition and diversity can be attributed to variations in the frequency of meteorological changes. In accordance with the intermediate disturbance hypothesis (IDH), diversity was lowest during 1989, the year with the longest and most pronounced cycles of fair weather (14 to 27 fair days on end). However, the mechanism for this was rarely a decline of diversity caused by competitive exclusion within single long phases of stable conditions, as conceived by the intermediate disturbance hypothesis. Instead, diversity responded to changes in mixing conditions with a variety of patterns — often with low values during phases of increased mixing and with high values under quiescent conditions, especially during the first calm days just after increased mixing. Thus, not disturbance as such, but rather the rate of change between phases of disturbance and quiescence appears to determine the frequency of high diversity indices.In Lake Tegel, high diversity indices were somewhat more frequent in 1989, the year during which thermal stratification was most stable. For species adapted to frequent or continuous mixing, interjected calm phases with unusually high stability of thermal stratification may represent a disturbance of accustomed conditions. Thus, in turbulent Lake Tegel, meteorological cycles appear to act in reversal to the IDH, in a sense which may be termed intermediate quiescence hypothesis.Phosphorus limitation due to successful restoration was found to decrease winter and vernal diversity in Schlachtensee. Presumably, without nutrient constraints, new populations could grow more rapidly in response to the rapid changes of physical parameters during this season. In contrast, restoration has increased summer diversity, as phosphorus concentrations no longer allow the virtual monocultures of Planktothrix agardhii which prevailed previously. In Lake Tegel, the reduction of phosphorus concentration down to 60 µg/l P in 1989 limited biomass, but this level was still too high to significantly alter species composition or diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号