首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNASET2 (Ribonuclease T2) functions as a tumor suppressor in preventing ovarian tumorigenesis. However, the mechanisms underlying the regulation of RNASET2 protein are completely unknown. Here we identified the F-box protein FBXO6, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the ubiquitin E3 ligase for RNASET2. We found that the interaction between FBXO6 and RNASET2 induced RNASET2 instability through the ubiquitin-mediated proteasome degradation pathway. FBXO6 promoted K48-dependent ubiquitination of RNASET2 via its FBA domain. Through analysis of the TCGA dataset, we found that FBXO6 was significantly increased in ovarian cancer tissues and the high expression of FBXO6 was related to the poor overall survival (OS) of ovarian cancer patients at advanced stages. An inverse correlation between the protein levels of FBXO6 and RNASET2 was observed in clinic ovarian cancer samples. Depletion of FBXO6 promoted ovarian cancer cells proliferation, migration, and invasion, which could be partially reversed by RNASET2 silencing. Thus, our data revealed a novel FBXO6-RNASET2 axis, which might contribute to the development of ovarian cancer. We propose that inhibition of FBXO6 might represent an effective therapeutic strategy for ovarian cancer treatment.Subject terms: Oncogenes, Ubiquitin ligases  相似文献   

2.
Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is a type of RNA binding protein that highly expressed in a variety of tumors and plays a vital role in tumor progression. However, its post-translational regulation through ubiquitin-mediated proteolysis and the cellular mechanism responsible for its proteasomal degradation remains unclear. F-box proteins (FBPs) function as the substrate recognition subunits of SCF ubiquitin ligase complexes and directly bind to substrates. The aberrant expression or mutation of FBPs will lead to the accumulation of its substrate proteins that often involved in tumorigenesis. Here we discover FBXO16, an E3 ubiquitin ligase, to be a tumor suppressor in ovarian cancer, and patients with the relatively high expression level of FBXO16 have a better prognosis. Silencing or depleting FBXO16 significantly enhanced ovarian cancer cell proliferation, clonogenic survival, and cell invasion by activating multiple oncogenic pathways. This function requires the F-box domain of FBXO16, through which FBXO16 assembles a canonical SCF ubiquitin ligase complex that constitutively targets hnRNPL for degradation. Depletion of hnRNPL is sufficient to inactive multiple oncogenic signaling regulated by FBXO16 and prevent the malignant behavior of ovarian cancer cells caused by FBXO16 deficiency. FBXO16 interacted with the RRM3 domain of hnRNPL via its C-terminal region to trigger the proteasomal degradation of hnRNPL. Failure to degrade hnRNPL promoted ovarian cancer cell proliferation in vitro and tumor growth vivo, phenocopying the deficiency of FBXO16 in ovarian cancer.Subject terms: Ovarian cancer, Oncogenes  相似文献   

3.
SRY (sex determining region Y)-box 2 (SOX2) plays an important role in tumor cell metastasis and apoptosis. Laryngeal squamous cell carcinoma (LSCC), responsible for 1.5% of all cancers, is one of the most common head and neck malignancies. Accumulating evidence shows that SOX2 is overexpressed in several human tumors, including lung cancer, esophageal carcinoma, pancreatic carcinoma, breast cancer, ovarian carcinoma and glioma. Our study aimed to investigate the silencing effects of SOX2 expression using RNA interference (RNAi) on various biological processes in laryngeal cancer TU212 cells, including proliferation, apoptosis, invasion and metastasis. We also studied the involvement of the MAPK/JNK signaling pathway in the biological effects of SOX2 siRNA in TU212 cells. We found that silencing SOX2 decreased the proliferation, migration, and invasion of TU212 cells, and induced apoptosis. This effect of silencing SOX2 could be reversed by silencing MAP4K4. Therefore, we consider SOX2 as a key regulator of the upstream MAP4K4/JNK signaling pathways that could be a potential therapeutic target in the treatment of patients with or prevention of laryngeal cancer.  相似文献   

4.
NEAT1 is an important tumor oncogenic gene in various tumors. Nevertheless, its involvement remains poorly studied in cervical cancer. Our study explored the functional mechanism of NEAT1 in cervical cancer. NEAT1 level in several cervical cancer cells was quantified and we found NEAT1 was greatly upregulated in vitro. NEAT1 knockdown inhibited cervical cancer development through repressing cell proliferation, colony formation, capacity of migration, and invasion and also inducing the apoptosis. For another, microRNA (miR)-133a was downregulated in cervical cancer cells and NEAT1 negatively modulated miR-133a expression. Subsequently, we validated that miR-133a functioned as a potential target of NEAT1. Meanwhile, SOX4 is abnormally expressed in various cancers. SOX4 was able to act as a downstream target of miR-133a and silencing of SOX4 can restrain cervical cancer progression. In addition, in vivo assays were conducted to prove the role of NEAT1/miR-133a/SOX4 axis in cervical cancer. These findings implied that NEAT1 served as a competing endogenous RNA to sponge miR-133a and regulate SOX4 in cervical cancer pathogenesis. To sum up, it was implied that NEAT1/miR-133a/SOX4 axis was involved in cervical cancer development.  相似文献   

5.
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis.  相似文献   

6.
Although cisplatin is a very effective anticancer agent against several types of cancer including ovarian cancer, the mechanisms of acquired resistance are not fully understood. By chronically exposing cisplatin to ovarian cancer cell lines, we established two cisplatin-resistant cell lines OV433 and TOV112D. Our results indicate that the mechanisms underlying their cisplatin resistance are distinct. In OV433 cells, cisplatin resistance is associated with increased expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1). By knocking down MKP-1 expression by siRNA or inhibiting MKP-1 expression by its pharmacological inhibitor triptolide, cisplatin-resistant OV433 cells became cisplatin-sensitive and subsequently increased cisplatin-induced apoptosis. In TOV112D cells, on the other hand, acquired cisplatin resistance is associated with increased levels of Bcl-2 protein. By inhibiting the activity of Bcl-2 protein with its pharmacological inhibitor gossypol or knocking down Bcl-2 expression by siRNA, cisplatin-resistant TOV112D cells became cisplatin-sensitive and subsequently increased cisplatin-induced apoptosis. Therefore, our data suggest that the mechanisms of acquired cisplatin resistance vary among ovarian cancer cells, which involve up-regulation of molecules associated with the cell survival pathways.  相似文献   

7.
Cisplatin (DDP) -based chemotherapy is a standard strategy for cervical cancer, while chemoresistance remains a huge challenge. Copper transporter protein 1 (CTR1), a copper influx transporter required for high affinity copper (probably reduced Cu I) transport into the cell, reportedly promotes a significant fraction of DDP internalization in tumor cells. In the present study, we evaluated the function of CTR1 in the cell proliferation of cervical cancer upon DDP treatment. MicroRNAs (miRNAs) have been regarded as essential regulators of cell proliferation, apoptosis, migration, as well as chemoresistance. By using online tools, we screened for candidate miRNAs potentially regulate CTR1, among which miR-130a has been proved to promote cervical cancer cell proliferation through targeting PTEN in our previous study. In the present study, we investigated the role of miR-130a in cervical cancer chemoresistance to DDP, and confirmed the binding of miR-130a to CTR1. SOX9 also reportedly act on cancer chemoresistance. In the present study, we revealed that SOX9 inversely regulated miR-130a through direct targeting the promoter of miR-130a. Consistent with previous studies, SOX9 could affect cervical cancer chemoresistance to DDP. Taken together, we demonstrated a SOX9/miR-130a/CTR1 axis which modulated the chemoresistance of cervical cancer cell to DDP, and provided promising targets for dealing with the chemoresistance of cervical cancer.  相似文献   

8.
9.
Emerging studies have revealed the critical role of long non-coding RNAs (lncRNAs) in epithelial ovarian cancer (EOC) development and progression. Till now, the roles and potential mechanisms regarding FEZF1 antisense RNA 1 (FEZF1-AS1) within ovarian cancer (OC) remain unclear. The objective of this study was to uncover the biological function and the underlying mechanism of LncRNA FEZF1-AS1 in OC progression. FEZF1-AS1 expression levels were studied in cell lines and tissues of human ovarian cancer. In vitro studies were performed to evaluate the impact of FEZF1-AS1 knock-down on the proliferation, invasion, migration and apoptosis of OC cells. Interactions of FEZF1-AS1 and its target genes were identified by luciferase reporter assays. Our data showed overexpression of FEZF1-AS1 in OC cell lines and tissues. Cell migration, proliferation, invasion, wound healing and colony formation were suppressed by silencing of FEZF1-AS1. In contrast, cell apoptosis was promoted by FEZF1-AS1 knock-down in vitro. Furthermore, online bioinformatics analysis and tools suggested that FEZF1-AS1 directly bound to miR-130a-5p and suppressed its expression. Moreover, the inhibitory effects of miR-130a-5p on the OC cell growth were reversed by FEZF1-AS1 overexpression, which was associated with the increase in SOX4 expression. In conclusion, our results revealed that FEZF1-AS1 promoted the metastasis and proliferation of OC cells by targeting miR-130a-5p and its downstream SOX4 expression.  相似文献   

10.
FBXO2 belongs to the F-box family of proteins, is a cytoplasmic protein and ubiquitin ligase F-box protein with specificity for high-mannose glycoproteins. Recently published studies indicate that other members of the F-box family, such as SKP2 and FBXW7, are involved in the development of gastric cancer. The role of FBXO2 in the process of tumorigenesis, including gastric cancer, is still unknown. In this study, we show that the level of FBXO2 is highly correlated with lymph node metastasis, and that overall survival (OS) of patients with high FBXO2 expression is significantly shorter than patients with low FBXO2 expression. FBXO2 promoted the proliferation and migration of human gastric cancer cells, whereas knockdown of FBXO2 by siRNA led to a decrease in those activities. Down-regulating FBXO2 reduced epithelial-mesenchymal transition (EMT) in gastric cancer cells, with increased expression of E-cadherin and decreased expression of N-cadherin and vimentin. In summary, our findings suggest that FBXO2-regulated EMT led to carcinogenicity in gastric cancer and may be a novel target in the diagnosis and treatment of gastric cancer.  相似文献   

11.
12.
Many microRNAs (miRNAs) play vital roles in the tumorigenesis and development of cancers. In this study, we aimed to identify the differentially expressed miRNAs and their specific mechanisms in non-small-cell lung cancer (NSCLC). Based on data from the GSE56036 database, miR-30a-5p expression was identified to be downregulated in NSCLC. Further investigations showed that overexpression of miR-30a-5p inhibited cell proliferation, migration, and promoted apoptosis in NSCLC. Increase of miR-30a-5p level could induce the increase of Bax protein level and decrease of Bcl-2 protein level. In addition, chromatin immunoprecipitation assays showed that miR-30a-5p expression was induced by binding of p53 to the promoter of MIR30A. Bioinformatics prediction indicated that miR-30a-5p targets SOX4, and western blot analysis indicated that overexpression of the miRNA decreases the SOX4 protein expression level, which in turn regulated the level of p53. Thus, this study provides evidence for the existence of a p53/miR-30a-5p/SOX4 feedback loop, which likely plays a key role in the regulation of proliferation, apoptosis, and migration in NSCLC, highlighting a new therapeutic target.  相似文献   

13.
目的:检测SOX2在胃癌组织中的表达,探讨SOX2对胃癌干细胞自我更新、增殖和转移能力的影响。方法:采用免疫组化检测SOX2在胃癌及癌旁组织中的表达情况。通过肿瘤球形成实验富集、分离胃癌干细胞。构建SOX2过表达慢病毒并感染胃癌干细胞中,通过实时定量PCR和western bolt检测感染慢病毒后胃癌干细胞中SOX2表达情况。分别利用肿瘤球形成实验检测SOX2对胃癌肿瘤干细胞自我更新能力的影响,CCK-8实验检测SOX2对胃癌干细胞增殖能力的影响,流式细胞术分析SOX2对胃癌干细胞的细胞周期的影响,Transwell实验检测SOX2对胃癌干细胞转移能力的影响。结果:SOX2在胃癌组织中表达显著低于癌旁组织。肿瘤球形成实验能够有效富集胃癌细胞SGC-7901和BGC-823的干细胞。慢病毒载体感染能够显著增强SOX2在胃癌干细胞中的表达。过表达SOX2能够抑制胃癌干细胞的自我更新、增殖和侵袭能力。结论:SOX2在胃癌中发挥抑癌基因的功能,其机制可能通过抑制肿瘤干细胞的自我更新、增殖和侵袭转移能力而抑制胃癌的发生发展。  相似文献   

14.
As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists’ attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs) are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2) were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.  相似文献   

15.
《Translational oncology》2021,14(12):101236
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis.  相似文献   

16.
《Translational oncology》2022,15(12):101236
Cancer-associated fibroblasts (CAFs) have important roles in promoting cancer development and progression. We previously reported that high expression of sex-determining region Y (SRY)-box9 (SOX9) in oral squamous cell carcinoma (OSCC) cells was positively correlated with poor prognosis. This study developed three-dimensional (3D) in vitro models co-cultured with OSCC cells and CAFs to examine CAF-mediated cancer migration and invasion in vitro and in vivo. Moreover, we performed an immunohistochemical analysis of alpha-smooth muscle actin and SOX9 expression in surgical specimens from 65 OSCC patients. The results indicated that CAFs promote cancer migration and invasion in migration assays and 3D in vitro models. The invading OSCC cells exhibited significant SOX9 expression and changes in the expression of epithelial–mesenchymal transition (EMT) markers, suggesting that SOX9 promotes EMT. TGF-β1 signalling inhibition reduced SOX9 expression and cancer invasion in vitro and in vivo, indicating that TGF-β1-mediated invasion is dependent on SOX9. In surgical specimens, the presence of CAFs was correlated with SOX9 expression in the invasive cancer nests and had a significant impact on regional recurrence. These findings demonstrate that CAFs promote cancer migration and invasion via the TGF-β/SOX9 axis.  相似文献   

17.
Enhancer of zeste homolog 2 (EZH2), an oncogene, is a commonly up‐regulated epigenetic factor in human cancer. Hepatocellular carcinoma deletion gene 1 (DLC1) is an antioncogene that is either expressed at low levels or not expressed in many malignant tumours. Curcumin is a promising anticancer drug that has antitumour effects in many tumours, but its mechanism of action is unclear. Our research demonstrated that EZH2 was up‐regulated in breast cancer (BC) tissues and cells, whereas DLC1 was down‐regulated, and the expression of EZH2 and DLC1 was negatively correlated in BC. By analysing the characteristics of clinical cases, we found that positive expression of EZH2 and negative expression of DLC1 may be predictors of poor prognosis in patients with triple‐negative breast cancer (TNBC). Moreover, knockdown of EZH2 expression restored the expression of DLC1 and inhibited the migration, invasion and proliferation, promoted the apoptosis, and blocked the cell cycle of MDA‐MB‐231 cells. Furthermore, we found that curcumin restored the expression of DLC1 by inhibiting EZH2; it also inhibited the migration, invasion and proliferation of MDA‐MB‐231 cells, promoted their apoptosis and blocked the cell cycle. Finally, xenograft tumour models were used to demonstrate that curcumin restored DLC1 expression by inhibiting EZH2 and also inhibited the growth and promoted the apoptosis of TNBC cells. In conclusion, our results suggest that curcumin can inhibit the migration, invasion and proliferation, promote the apoptosis, block the cycle of TNBC cells and restore the expression of DLC1 by inhibiting the expression of EZH2.  相似文献   

18.
Ovarian cancer characterizes as the fourth leading consequence of death associated with cancer for women. Accumulating evidence underscores the vital roles of microRNAs (miRNAs) in preventing ovarian cancer development. Besides, induction of the phosphatidylinositol-3 kinase/serine/threonine kinase (PI3K/Akt) pathway associated with the ovarian cancer cell migration and invasion. The study aims to examine the effects of miR-15b on the proliferation, apoptosis, and senescence of human ovarian cancer cells by binding to lysophosphatidic acid receptor 3 (LPAR3) with the involvement of the PI3K/Akt pathway. The positive expression of LPAR3 protein was detected by immunohistochemistry. Then the interaction between miR-15b and LPAR3 was examined. The possible role of miR-15b in ovarian cancer was explored using gain- and loss-of-function experiments. Subsequently, the functions of miR-15b on PI3K/Akt pathway, proliferation, migration, invasion, senescence and apoptosis of ovarian cancer cells were assessed. Furthermore, in vivo tumorigenicity assay in nude mice was performed. LPAR3 was overexpressed, whereas miR-15b was poorly expressed in ovarian cancer tissues. LPAR3 is a direct target of miR-15b. Restored miR-15b promoted Bax expression, apoptosis, and senescence, inhibited expression of LPAR3 and Bcl-2, the extent of PI3K and Akt phosphorylation, as well as ovarian cancer cell proliferation, migration, and invasion. Further, tumor growth was observed to be prevented by miR-15b overexpression. Collectively, our study demonstrates that miR-15b represses the proliferation and drives the senescence and apoptosis of ovarian cancer cells through the suppression of LPAR3 and the PI3K/Akt pathway, highlighting an antitumorigenic role of miR-15b.  相似文献   

19.
The influences of Vinculin on many cancers were blurry, including ovarian cancer. Thus, we concentrated on the efficient role of Vinculin in ovarian cancer and explored the potential mechanism(s). Expression of Vinculin in ovarian cancer tissues and cell lines was investigated by real‐time polymerase chain reaction, immunohistochemistry, and Western blot. The Kaplan–Meier manner with the logrank was performed to assess overall survival. We further evaluated the relations between Vinculin expression and clinicopathological features of ovarian cancer. Moreover, Vinculin was overexpressed or silenced by respectively transfection with pcDNA‐Vinculin or small interfering (si‐Vinculin) into human ovarian cancer cell line Caov3 or human ovarian epithelial cell line (HOEpiC). Thereafter, cell viability, cell apoptosis, and migration were checked by 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide, flow cytometer, and scratch assay, respectively. Likewise, the apoptosis‐ and migration‐related proteins were distinguished by Western blot. Compared to the nontumor tissues or HOEpiC cells, Vinculin was significantly lower expressed in the ovarian cancer tissues and cells. Furthermore, we found out that Vinculin was primarily distributed at the cell membrane and cytoplasm. Moreover, Vinculin was negatively associated with International Federation of Gynecology and Obstetrics stage, grade, and distant metastasis. Overexpression of Vinculin dramatically weakened cell viability and migration and stimulated apoptosis. Conversely, suppression of Vinculin showed opposite results. Vinculin presents unfavorable prediction in ovarian cancer and inhibits ovarian cancer proliferation and migration.  相似文献   

20.
Cleavage and polyadenylation specificity factor 1 (CPSF1), a member of CPSF complex, has been reported to play a key role in pre-mRNA 3′-end formation, but its possible role in ovarian cancer remains unclear. In the present study, we found the mRNA level of CPSF1 was overexpressed in ovarian cancer tissues using Oncomine Cancer Microarray database. Then the loss-of-function assays, including CCK-8, colony formation and flow cytometry assays, were performed to determine the effects of CPSF1 on cell viability, proliferation, cell cycle and apoptosis of human ovarian cancer cell lines (SKOV-3 and OVCAR-3). The results indicated that depletion of CPSF1 suppressed cell viability, impaired colony formation ability, induced cell cycle arrest at G0/G1 phase and promoted cell apoptosis in ovarian cancer cells. Furthermore, knockdown of CPSF1 upregulated the expression of cleaved caspase-3 and PARP and downregulated CDK4/cyclin D1 expression. These data suggested that CPSF1 could promote ovarian cancer cell growth and proliferation in vitro and its depletion might serve as a potential therapeutic target for human ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号