首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fatty acid elongase-1 β-ketoacyl-CoA synthase, FAE1 KCS, a seed-specific elongase condensing enzyme from Arabidopsis, is involved in the production of eicosenoic (C20:1) and erucic (C22:1) acids. Alignment of the amino acid sequences of FAE1 KCS, KCS1, and five other putative elongase condensing enzymes (KCSs) revealed the presence of six conserved cysteine and four conserved histidine residues. Each of the conserved cysteine and histidine residues was individually converted by site-directed mutagenesis to both alanine and serine, and alanine and lysine respectively. After expression in yeast cells, the mutant enzymes were analyzed for their fatty acid elongase activity. Our results indicated that only cysteine 223 is an essential residue for enzyme activity, presumably for acyl chain transfer. All histidine substitutions resulted in complete loss of elongase activity. The loss of activity of these mutants was not due to their lower expression level since immunoblot analysis confirmed each was expressed to the same extent as the wild type FAE1 KCS.  相似文献   

2.
Very-long-chain fatty acids (VLCFAs) are important functional components of various lipid classes, including cuticular lipids in the higher plant epidermis and lipid-derived second messengers. Here, we report the characterization of transgenic Arabidopsis thaliana plants that epidermally express FATTY ACID ELONGATION1 (FAE1), the seed-specific β-ketoacyl-CoA synthase (KCS) catalyzing the first rate-limiting step in VLCFA biosynthesis. Misexpression of FAE1 changes the VLCFAs in different classes of lipids but surprisingly does not complement the KCS fiddlehead mutant. FAE1 misexpression plants are similar to the wild type but display an essentially glabrous phenotype, owing to the selective death of trichome cells. This cell death is accompanied by membrane damage, generation of reactive oxygen species, and callose deposition. We found that nuclei of arrested trichome cells in FAE1 misexpression plants cell-autonomously accumulate high levels of DNA damage, including double-strand breaks characteristic of lipoapoptosis. A chemical genetic screen revealed that inhibitors of KCS and phospholipase A2 (PLA2), but not inhibitors of de novo ceramide biosynthesis, rescue trichome cells from death. These results support the functional role of acyl chain length of fatty acids and PLA2 as determinants for programmed cell death, likely involving the exchange of VLCFAs between phospholipids and the acyl-CoA pool.  相似文献   

3.
4.
The fatty acid elongase [often designated FAE or beta-(or 3-) ketoacyl-CoA synthase] is a condensing enzyme and is the first component of the elongation complex involved in synthesis of erucic acid (22:1) in seeds of garden nasturtium (Tropaeolum majus). Using a degenerate primers approach, a cDNA of a putative embryo FAE was obtained showing high homology to known plant elongases. This cDNA contains a 1,512-bp open reading frame that encodes a protein of 504 amino acids. A genomic clone of the nasturtium FAE was isolated and sequence analyses indicated the absence of introns. Northern hybridization showed the expression of this nasturtium FAE gene to be restricted to the embryo. Southern hybridization revealed the nasturtium beta-ketoacyl-CoA synthase to be encoded by a small multigene family. To establish the function of the elongase homolog, the cDNA was introduced into two different heterologous chromosomal backgrounds (Arabidopsis and tobacco [Nicotiana tabacum]) under the control of a seed-specific (napin) promoter and the tandem 35S promoter, respectively. Seed-specific expression resulted in up to an 8-fold increase in erucic acid proportions in Arabidopsis seed oil, while constitutive expression in transgenic tobacco tissue resulted in increased proportions of very long chain saturated fatty acids. These results indicate that the nasturtium FAE gene encodes a condensing enzyme involved in the biosynthesis of very long chain fatty acids, utilizing monounsaturated and saturated acyl substrates. Given its strong and unique preference for elongating 20:1-CoA, the utility of the FAE gene product for directing or engineering increased synthesis of erucic acid is discussed.  相似文献   

5.
6.
Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production.  相似文献   

7.
Denic V  Weissman JS 《Cell》2007,130(4):663-677
Very long-chain fatty acids (VLCFAs) are essential lipids whose functional diversity is enabled by variation in their chain length. The full VLCFA biosynthetic machinery and how this machinery generates structural diversity remain elusive. Proteoliposomes reconstituted here from purified membrane components-an elongase protein (Elop), a novel dehydratase, and two reductases-catalyzed repeated rounds of two-carbon addition that elongated shorter FAs into VLCFAs whose length was dictated by the specific Elop homolog present. Mutational analysis revealed that the Elop active site faces the cytosol, whereas VLCFA length is determined by a lysine near the luminal end of an Elop transmembrane helix. By stepping the lysine residue along one face of the helix toward the cytosol, we engineered novel synthases with correspondingly shorter VLCFA outputs. Thus the distance between the active site and the lysine residue determines chain length. Our results uncover a mutationally adjustable, caliper-like mechanism that generates the repertoire of cellular VLCFAs.  相似文献   

8.
Very-long-chain fatty acids (VLCFAs) are essential for many aspects of plant development and necessary for the synthesis of seed storage triacylglycerols, epicuticular waxes, and sphingolipids. Identification of the acetyl-CoA carboxylase PASTICCINO3 and the 3-hydroxy acyl-CoA dehydratase PASTICCINO2 revealed that VLCFAs are important for cell proliferation and tissue patterning. Here, we show that the immunophilin PASTICCINO1 (PAS1) is also required for VLCFA synthesis. Impairment of PAS1 function results in reduction of VLCFA levels that particularly affects the composition of sphingolipids, known to be important for cell polarity in animals. Moreover, PAS1 associates with several enzymes of the VLCFA elongase complex in the endoplasmic reticulum. The pas1 mutants are deficient in lateral root formation and are characterized by an abnormal patterning of the embryo apex, which leads to defective cotyledon organogenesis. Our data indicate that in both tissues, defective organogenesis is associated with the mistargeting of the auxin efflux carrier PIN FORMED1 in specific cells, resulting in local alteration of polar auxin distribution. Furthermore, we show that exogenous VLCFAs rescue lateral root organogenesis and polar auxin distribution, indicating their direct involvement in these processes. Based on these data, we propose that PAS1 acts as a molecular scaffold for the fatty acid elongase complex in the endoplasmic reticulum and that the resulting VLCFAs are required for polar auxin transport and tissue patterning during plant development.  相似文献   

9.
Oil from oleaginous seeds is mainly composed of triacylglycerols. Very long chain fatty acids (VLCFAs) are major constituents of triacylglycerols in many seed oils and represent valuable feedstock for industrial purposes. To identify genetic factors governing natural variability in VLCFA biosynthesis, a quantitative trait loci (QTL) analysis using a recombinant inbred line population derived from a cross between accessions Bay-0 and Shahdara was performed in Arabidopsis thaliana. Two fatty acid chain length ratio (CLR) QTL were identified, with one major locus, CLR.2, accounting for 77% of the observed phenotypic variation. A fine mapping and candidate gene approach showed that a key enzyme of the fatty acid elongation pathway, the β-ketoacyl-CoA synthase 18 (KCS18), was responsible for the CLR.2 QTL detected between Bay-0 and Shahdara. Association genetics and heterologous expression in yeast cells identified a single point mutation associated with an alteration of KCS18 activity, uncovering the molecular bases for the modulation of VLCFA content in these two natural populations of Arabidopsis. Identification of this kcs18 mutant with altered activity opens new perspectives for the modulation of oil composition in crop plants.  相似文献   

10.
The fatty acid elongase 1 (FAE1) gene is a key gene in the erucic acid biosynthesis in rapeseed. The complete coding sequences of the FAE1 gene were isolated separately from eight high and zero erucic acid rapeseed cultivars (Brassica napus L.). A four base pair deletion between T1366 and G1369 in the FAE1 gene was found in a number of the cultivars, which leads to a frameshift mutation and a premature stop of the translation after the 466th amino acid residue. This deletion was predominantly found in the C-genome and rarely in the A-genome of B. napus. Expression of the gene isoforms with the four base pair deletion in a yeast system generated truncated proteins with no enzymatic activity and could not produce very long chain fatty acids as the control with an intact FAE1 gene did in yeast cells. In the developing rape seeds the FAE1 gene isoforms with the four base pair deletion were transcribed normally but failed to translate proteins to form a functional complex. The four base pair deletion proved to be a mutation responsible for the low erucic acid trait in rapeseed and independent from the point mutation reported by Han et al. (Plant Mol Biol 46:229–239, 2001). Gang Wu, Yuhua Wu contribute equally to this article.  相似文献   

11.
12.
13.
The intestine has an extraordinary capacity for fatty acid (FA) absorption. Numerous candidates for a protein-mediated mechanism of dietary FA absorption have been proposed, but firm evidence for this process has remained elusive. Here we show that the scavenger receptor CD36 is required both for the uptake of very long chain FAs (VLCFAs) in cultured cells and the absorption of dietary VLCFAs in mice. We found that the fraction of CD36-dependent saturated fatty acid association/absorption in these model systems is proportional to the FA chain length and specific for fatty acids and fatty alcohols containing very long saturated acyl chains. Moreover, intestinal VLCFA absorption is completely abolished in CD36-null mice fed a high fat diet, illustrating that the predominant mechanism for VLCFA absorption is CD36-dependent. Together, these findings represent the first direct evidence for protein-facilitated FA absorption in the intestine and identify a novel therapeutic target for the treatment of diseases characterized by elevated VLCFA levels.  相似文献   

14.
Naganuma T  Sato Y  Sassa T  Ohno Y  Kihara A 《FEBS letters》2011,585(20):3337-3341
Very long-chain fatty acids (VLCFAs) have a variety of physiological functions and are related to numerous disorders. The key step of VLCFA elongation is catalyzed by members of the elongase family, ELOVLs. Mammals have seven ELOVLs (ELOVL1-7), yet none of them has been purified and analyzed. In the presented study we purified ELOVL7 and measured its activity by reconstituting it into proteoliposomes. Purified ELOVL7 exhibited high activity toward acyl-CoAs with C18 carbon chain length. The calculated K(m) values toward C18:3(n-3)-CoA and malonyl-CoA were both in the μM range. We also found that progression of the VLCFA cycle enhances ELOVL7 activity.  相似文献   

15.
 The synthesis of very long chain fatty acids occurs in the cytoplasm via an elongase complex. A key component of this complex is the β-ketoacyl-CoA synthase, a condensing enzyme which in Arabidopsis is encoded by the FAE1 gene. Two sequences homologous to the FAE1 gene were isolated from a Brassica napus immature embryo cDNA library. The two clones, CE7 and CE8, contain inserts of 1647 bp and 1654 bp, respectively. The CE7 gene encodes a protein of 506 amino acids and the CE8 clone, a protein of 505 amino acids, each having an approximate molecular mass of 56 kDa. The sequences of the two cDNA clones are highly homologous yet distinct, sharing 97% nucleotide identity and 98% identity at the amino acid level. Southern hybridisation showed the rapeseed β-ketoacyl-CoA synthase to be encoded by a small multigene family. Northern hybridisation showed the expression of the rapeseed FAE1 gene(s) to be restricted to the immature embryo. One of the FAE1 genes is tightly linked to the E1 locus, one of two loci controlling erucic acid content in rapeseed. The identity of the second locus, E2, is discussed. Received: 4 April 1997 / Accepted: 30 July 1997  相似文献   

16.
Genomic fatty acid elongation 1 (FAE1) clones from high erucic acid (HEA) Brassica napus, Brassica rapa and Brassica oleracea, and low erucic acid (LEA) B. napus cv. Westar, were amplified by PCR and expressed in yeast cells under the control of the strong galactose-inducible promoter. As expected, yeast cells expressing the FAE1 genes from HEA Brassica spp. synthesized very long chain monounsaturated fatty acids that are not normally found in yeast, while fatty acid profiles of yeast cells expressing the FAE1 gene from LEA B. napus were identical to control yeast samples. In agreement with published findings regarding different HEA and LEA B. napus cultivars, comparison of FAE1 protein sequences from HEA and LEA Brassicaceae revealed one crucial amino acid difference: the serine residue at position 282 of the HEA FAE1 sequences is substituted by phenylalanine in LEA B. napus cv. Westar. Using site directed mutagenesis, the phenylalanine 282 residue was substituted with a serine residue in the FAE1 polypeptide from B. napus cv. Westar, the mutated gene was expressed in yeast and GC analysis revealed the presence of very long chain monounsaturated fatty acids (VLCMFAs), indicating that the elongase activity was restored in the LEA FAE1 enzyme by the single amino acid substitution. Thus, for the first time, the low erucic acid trait in canola B. napus can be attributed to a single amino acid substitution which prevents the biosynthesis of the eicosenoic and erucic acids.  相似文献   

17.
Very long chain fatty acids (VLCFAs) are essential components for eukaryotes. They are elongated by the elongase complex in the endoplasmic reticulum and are incorporated into four major lipid pools (triacylglycerols, waxes, phospholipids, complex sphingolipids). Functional analysis of several components of the elongase complex demonstrated the essential role of VLCFAs in plants, invertebrates and vertebrates. Although VLCFAs changes in the triacylglycerol pool has no consequence for plant development, modifications of the nature and levels of VLCFAs in waxes, phospholipids and complex sphingolipids have, collectively, profound effects on embryo, leaf, root and flower development. VLCFAs levels in epicuticular waxes are critical for the regulation of epidermal fusions during organogenesis. VLCFAs phospholipids and sphingolipids are involved in membrane structure and dynamics regulating cell size but also division and differentiation. This review summarizes the recent findings in plants but also in other organisms, highlighting the importance of very long acyl chain length during development.  相似文献   

18.
19.
Ceramides and sphingolipid intermediates are well-established regulators of the cell cycle. In the budding yeast Saccharomyces cerevisae, the complex sphingolipid backbone, ceramide, comprises a long chain sphingoid base, a polar head group, and a very long chain fatty acid (VLCFA). While ceramides and long chain bases have been extensively studied as to their roles in regulating cell cycle arrest under multiple conditions, the roles of VLCFAs are not well understood. Here, we used the yeast elo2 and elo3 mutants, which are unable to elongate fatty acids, as tools to explore if maintaining VLCFA elongation is necessary for cell cycle arrest in response to yeast mating. We found that both elo2 and elo3 cells had severely reduced mating efficiencies and were unable to form polarized shmoo projections that are necessary for cell-cell contact during mating. They also lacked functional MAP kinase signaling activity and were defective in initiating a cell cycle arrest in response to pheromone. Additional data suggests that mislocalization of the Ste5 scaffold in elo2 and elo3 mutants upon mating initiation may be responsible for the inability to initiate a cell cycle arrest. Moreover, the lack of proper Ste5 localization may be caused by the inability of mutant cells to mobilize PIP2. We suggest that VLCFAs are required for Ste5 localization, which is a necessary event for initiating MAP kinase signaling and cell cycle arrest during yeast mating initiation.  相似文献   

20.
The marine parasitic protozoon Perkinus marinus synthesizes the polyunsaturated fatty acid arachidonic acid via the unusual alternative Delta8 pathway in which elongation of C18 fatty acids generates substrate for two sequential desaturations. Here we have shown that genes encoding the three P. marinus activities responsible for arachidonic acid biosynthesis (C18 Delta9-elongating activity, C20 Delta8 desaturase, C20 Delta5 desaturase) are genomically clustered and co-transcribed as an operon. The acyl elongation reaction, which underpins this pathway, is catalyzed by a FAE1 (fatty acid elongation 1)-like 3-ketoacyl-CoA synthase class of condensing enzyme previously only reported in higher plants and algae. This is the first example of an elongating activity involved in the biosynthesis of a polyunsaturated fatty acid that is not a member of the ELO/SUR4 family. The P. marinus FAE1-like elongating activity is sensitive to the herbicide flufenacet, similar to some higher plant 3-ketoacyl-CoA synthases, but unable to rescue the yeast elo2Delta/elo3Delta mutant consistent with a role in the elongation of polyunsaturated fatty acids. P. marinus represents a key organism in the taxonomic separation of the single-celled eukaryotes collectively known as the alveolates, and our data imply a lineage in which ancestral acquisition of plant-like genes, such as FAE1-like 3-ketoacyl-CoA synthases, occurred via endosymbiosis. The P. marinus FAE1-like elongating activity is also indicative of the independent evolution of the alternative Delta8 pathway, distinct from ELO/SUR4-dependent examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号