首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
1. Measurements of the activities in rat liver of the four key enzymes involved in gluconeogenesis, i.e. pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxykinase (EC 4.1.1.32), fructose 1,6-diphosphatase (EC 3.1.3.11) and glucose 6-phosphatase (EC 3.1.3.9), have been carried out, all four enzymes being measured in the same liver sample. Changes in activities resulting from starvation and diabetes have been studied. Changes in concentration (activity/unit wet weight of tissue) were compared with changes in the hepatic cellular content (activity/unit of DNA). 2. Each enzyme was found to increase in concentration during starvation for up to 3 days, but only glucose 6-phosphatase and phosphoenolpyruvate carboxykinase showed a significant rise in content. Fructose 1,6-diphosphatase appeared to decrease in content somewhat during the early stages of starvation. 3. There was a marked increase in the concentration of all four enzymes in non-starved rats made diabetic with alloxan or streptozotocin, for the most part similar responses being found for the two diabetogenic agents. On starvation, however, the enzyme contents in the diabetic animals tended to fall, often with streptozotocin-treated animals to values no greater than for the normal overnight-starved rat. Deprivation of food during the period after induction of diabetes with streptozotocin lessened the rise in enzyme activity. 4. The results are compared with other published values and factors such as substrate and activator concentrations likely to influence activity in vivo are considered. 5. Lack of correlation of change in fructose 1,6-diphosphatase with the other enzymes questions whether it should be included in any postulation of control of gluconeogenic enzymes by a single gene unit.  相似文献   

3.
Lactate production in the perfused rat liver   总被引:10,自引:9,他引:1       下载免费PDF全文
1. In aerobic conditions the isolated perfused liver from well-fed rats rapidly formed lactate from endogenous glycogen until the lactate concentration in the perfusion medium reached about 2mm (i.e. the concentration of lactate in blood in vivo) and then production ceased. Pyruvate was formed in proportion to the lactate, the [lactate]/[pyruvate] ratio remaining between 8 and 15. 2. The addition of 5mm- or 10mm-glucose did not affect lactate production, but 20mm- and 40mm-glucose greatly increased lactate production. This effect of high glucose concentration can be accounted for by the activity of glucokinase. 3. The perfused liver released glucose into the medium until the concentration was about 6mm. When 5mm- or 10mm-glucose was added to the medium much less glucose was released. 4. At high glucose concentrations (40mm) more glucose was taken up than lactate and pyruvate were produced; the excess of glucose was probably converted into glycogen. 5. In anaerobic conditions, livers of well-fed rats produced lactate at relatively high rates (2.5mumol/min per g wet wt.). Glucose was also rapidly released, at an initial rate of 3.2mumol/min per g wet wt. Both lactate and glucose production ceased when the liver glycogen was depleted. 6. Addition of 20mm-glucose increased the rate of anaerobic production of lactate. 7. d-Fructose also increased anaerobic production of lactate. In the presence of 20mm-fructose some glucose was formed anaerobically from fructose. 8. In the perfused liver from starved rats the rate of lactate formation was very low and the increase after addition of glucose and fructose was slight. 9. The glycolytic capacity of the liver from well-fed rats is equivalent to its capacity for fatty acid synthesis and it is pointed out that hepatic glycolysis (producing acetyl-CoA in aerobic conditions) is not primarily an energy-providing process but part of the mechanism converting carbohydrate into fat.  相似文献   

4.
1. The activities of fructose 1,6-diphosphatase were measured in extracts of muscles of various physiological function, and compared with the activities of other enzymes including phosphofructokinase, phosphoenolpyruvate carboxykinase and the lactate-dehydrogenase isoenzymes. 2. The activity of phosphofructokinase greatly exceeded that of fructose diphosphatase in all muscles tested, and it is concluded that fructose diphosphatase could not play any significant role in the regulation of fructose 6-phosphate phosphorylation in muscle. 3. Fructose-diphosphatase activity was highest in white muscle and low in red muscle. No activity was detected in heart or a deep-red skeletal muscle, rabbit semitendinosus. 4. The lactate-dehydrogenase isoenzyme ratio (activities at high and low substrate concentration) was measured in various muscles because a low ratio is characteristic of muscles that are more dependent on glycolysis for their energy production. As the ratio decreased the activity of fructose diphosphatase increased, which suggests that highest fructose-diphosphatase activity is found in muscles that depend most on glycolysis. 5. There was a good correlation between the activities of fructose diphosphatase and phosphoenolpyruvate carboxykinase in white muscle, where the activities of these enzymes were similar to those of liver and kidney cortex. However, the activities of pyruvate carboxylase and glucose 6-phosphatase were very low in white muscle, thereby excluding the possibility of gluconeogenesis from pyruvate and lactate. 6. It is suggested that the presence of fructose diphosphatase and phosphoenolpyruvate carboxykinase in white muscle may be related to operation of the alpha-glycerophosphate-dihydroxyacetone phosphate and malate-oxaloacetate cycles in this tissue.  相似文献   

5.
1. The ratio of the combined activities of hexokinase (EC 2.7.1.1) and glucokinase (EC 2.7.1.2) to the activity of glucose-6-phosphatase (EC 3.1.3.9) changed in favour of the glycolytic enzymes during pregnancy and at peak lactation. 2. There were no important changes in the ratio of the activity of phosphofructokinase (EC 2.7.1.11) to that of fructose diphosphatase (EC 3.1.3.11). 3. The ratio of the activity of pyruvate kinase (EC 2.7.1.40) to the combined activities of phosphoenolpyruvate carboxylase (EE 4.1.1.32) and pyruvate carboxylase (EC 6.4.1.1) changed in favour of the glycolytic enzyme during pregnancy and at peak lactation, but changed in favour of the gluconeogenic enzymes immediately after parturition. 4. These changes are considered in relation to the changes in food intake and hormonal status that occur during pregnancy and lactation.  相似文献   

6.
Metabolic control of hepatic gluconeogenesis during exercise.   总被引:2,自引:0,他引:2       下载免费PDF全文
Prolonged exercise increased the concentrations of the hexose phosphates and phosphoenolpyruvate and depressed those of fructose 1,6-bisphosphate, triose phosphates and pyruvate in the liver of the rat. Since exercise increases gluconeogenic flux, these changes in metabolite concentrations suggest that metabolic control is exerted, at least, at the fructose 6-phosphate/fructose 1,6-bisphosphate and phosphoenolpyruvate/pyruvate substrate cycles. Exercise increased the maximal activities of glucose 6-phosphatase, fructose 1,6-bisphosphatase, pyruvate kinase and pyruvate carboxylase in the liver, but there were no changes in those of glucokinase, 6-phosphofructokinase and phosphoenolpyruvate carboxykinase. Exercise changed the concentrations of several allosteric effectors of the glycolytic or gluconeogenic enzymes in liver; the concentrations of acetyl-CoA, ADP and AMP were increased, whereas those of ATP, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate were decreased. The effect of exercise on the phosphorylation-dephosphorylation state of pyruvate kinase was investigated by measuring the activities under conditions of saturating and subsaturating concentrations of substrate. The submaximal activity of pyruvate kinase (0.5 mM-phosphoenolpyruvate), expressed as percentage of Vmax., decreased in the exercised animals to less than half that found in the controls. These changes suggest that hepatic pyruvate kinase is less active during exercise, possibly owing to phosphorylation of the enzyme, and this may play a role in increasing the rate of gluconeogenesis.  相似文献   

7.
Control of gluconeogenesis from lactate was studied by titrating rat liver cells with lactate and pyruvate in a ratio of 10:1 in a perifusion system. At different steady states of glucose formation, the concentration of key gluconeogenic intermediates was measured and plotted against gluconeogenic flux (J glucose). Complete saturation was observed only in the plot relating J glucose to the extracellular pyruvate concentration. Measurement of pyruvate distribution in the cell showed that the mitochondrial pyruvate translocator operates close to equilibrium at high lactate and pyruvate concentrations. It can therefore be concluded that pyruvate carboxylase limits maximal gluconeogenic flux. Addition of glucagon did not cause a shift in the plots relating J glucose to glucose 6-phosphate, dihydroxyacetone phosphate, 3-phosphoglycerate, and phosphoenolpyruvate. It can thus be concluded that glucagon does not affect the kinetic parameters of the enzymes involved in the conversion of phosphoenolpyruvate to glucose. Addition of glucagon led to a shift in the curves relating J glucose to the concentration of cytosolic oxalacetate and extracellular pyruvate. The shift in the curve relating J glucose to oxalacetate is due to glucagon-induced inhibition of pyruvate kinase. The stimulation of gluconeogenesis by glucagon can be accounted for almost completely by inhibition of pyruvate kinase. There was almost no stimulation by glucagon of pyruvate carboxylation. In the absence of glucagon, control on gluconeogenesis from lactate is distributed among different steps including pyruvate carboxylase and pyruvate kinase. Assuming that in the presence of glucagon all pyruvate kinase flux is inhibited, the control of gluconeogenesis in the presence of the hormone is confined exclusively to pyruvate carboxylase.  相似文献   

8.
In addition to lactate and pyruvate, some amino acids were found to serve as potential gluconeogenic substrates in the perfused liver ofClarias batrachus. Glutamate was found to be the most effective substrate, followed by lactate, pyruvate, serine, ornithine, proline, glutamine, glycine, and aspartate. Four gluconeogenic enzymes, namely phosphoenolpyruvate carboxykinase (PEPCK), pyruvate carboxylase (PC), fructose 1,6-bisphosphatase (FBPase) and glucose 6-phosphatase (G6Pase) could be detected mainly in liver and kidney, suggesting that the latter are the two major organs responsible for gluconeogenic activity in this fish. Hypo-osmotically induced cell swelling caused a significant decrease of gluconeogenic efflux accompanied with significant decrease of activities of PEPCK, FBPase and G6Pase enzymes in the perfused liver. Opposing effects were seen in response to hyperosmotically induced cell shrinkage. These changes were partly blocked in the presence of cycloheximide, suggesting that the aniso-osmotic regulations of gluconeogenesis possibly occurs through an inverse regulation of enzyme proteins and/or a regulatory protein synthesis in this catfish. In conclusion, gluconeogenesis appears to play a vital role inC. batrachus in maintaining glucose homeostasis, which is influenced by cell volume changes possibly for proper energy supply under osmotic stress.  相似文献   

9.
1. The activities of gluconeogenic and glycolytic enzymes and the concentrations of citrate, ammonia, amino acids, glycogen, glucose 6-phosphate, acetyl-CoA, lactate and pyruvate were measured in kidney cortex of normal, diabetic, cortisone-treated and growth hormone-treated rats. 2. In kidney cortex of diabetic, cortisone-treated and growth hormone-treated rats the activities of glucose 6-phosphatase (EC 3.1.3.9), fructose 1,6-diphosphatase (EC 3.1.3.11) and phosphopyruvate carboxylase (EC 4.1.1.32) were increased. 3. The activities of glutamate dehydrogenase (EC 1.4.1.3), alanine aminotransferase (EC 2.6.1.2), aspartate aminotransferase (EC 2.6.1.10) and pyruvate carboxylase (EC 6.4.1.1) were increased in diabetic and cortisone-treated rats. In growth hormone-treated rats the activity of aspartate aminotransferase was depressed but those of the other three enzymes were unchanged. 4. The activity of hexokinase (EC 2.7.1.1) was not altered in any of these conditions. Phosphofructokinase (EC 2.7.1.11) activity was depressed only in growth hormone-treated rats. Pyruvate kinase (EC 2.7.1.40) activity was depressed in cortisone-treated and growth hormone-treated rats but unchanged in diabetic rats. 5. Amino acids, acetyl-CoA and glucose 6-phosphate contents were increased in rat kidneys in all these three conditions. Ammonia content was increased in diabetic and cortisone-treated rats but was markedly diminished in growth hormone-treated rats. 6. The [lactate]/[pyruvate] ratio was elevated in diabetic and cortisone-treated rats but unchanged in growth hormone-treated rats. Citrate content was increased in the kidney cortex of diabetic and growth hormone-treated rats but was unchanged in cortisone-treated rats. The activity of ATP citrate lyase (EC 4.1.3.8) was depressed in diabetic and growth hormone-treated rats but was increased in cortisone-treated rats. 7. Glycogen content was moderately elevated in growth hormone-treated rats and markedly elevated in diabetic rats, whereas no change in glycogen content was observed in cortisone-treated rats. Glycogen synthetase (EC 2.4.1.11) activity was unchanged in all these three conditions. Phosphorylase (EC 2.4.1.1) activity was not affected in cortisone-treated rats but was depressed in diabetic and growth hormone-treated rats.  相似文献   

10.
1. In order to assess whether the potential ability of heart ventricular muscle and liver to metabolise substrates such as alanine, aspartate and lactate varies as the sheep matures and its nutrition changes, the activities of the following enzymes were determined in tissues of lambs obtained at varying intervals between 50 days after conception to 16 weeks after birth and in livers from adult pregnant ewes: lactate dehydrogenase (EC 1.1.1.27), alanine aminotransferase (EC 2.6.1.2), pyruvate kinase (EC 2.7.1.40), pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxykinase (GTP)(EC 4.1.1.32), malate dehydrogenase (EC 1.1.1.37), aspartate aminotransferase (EC 2.6.1.1) and citrate (si)-synthase (EC 4.1.3.7). 2. In the heart a most marked increase in alanine aminotransferase activity was found throughout development. During this period the activities of citrate (si)-synthase, lactate dehydrogenase and pyruvate carboxylase also increased. There were no substantial changes in the activities of aspartate aminotransferase, malate dehydrogenase or pyruvate kinase. Pyruvate kinase activities were five times greater in the heart compared with those found in the liver. No significant activity of phosphoenolpyruvate carboxykinase (GTP) was detected in heart muscle. 3. In the liver the activities of both alanine aminotransferase and aspartate aminotransferase increased immediately following birth although the activity of alanine aminotransferase was lower in livers of pregnant ewes than in any of the lambs. As with alanine aminotransferase the highest activities of lactate dehydrogenase were found during the period of postnatal growth. No marked changes were observed in malate dehydrogenase or citrate (si)-synthase activities during development. A small decline in pyruvate kinase activity occurred whilst the activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (GTP) tended to rise during development.  相似文献   

11.
To understand the effects of bcl-2 on glucose metabolism and tumor necrosis factor-alpha (TNF-alpha) mediated cytotoxicity, the activities of glycolytic enzymes (hexokinase, 6-phosphofructo-1-kinase, and pyruvate kinase), lactate dehydrogenase, pyruvate carboxylase, and phosphoenolpyruvate carboxykinase were examined with or without TNF-alpha treatment in TNF-alpha sensitive L929 cells and TNF-alpha resistant bcl-2 transfected L929 cells. In TNF-alpha-treated L929 cells, the activities of the glycolytic enzymes and lactate dehydrogenase greatly increased, but there was no detectable change in phosphoenolpyruvate carboxykinase. Pyruvate carboxylase activity decreased by about 25% between 6 and 12 h after TNF-alpha treatment. The activities of the glycolytic enzymes and lactate dehydrogenase in bcl-2 transfected L929 cells were lower than in L929 cells upon TNF-alpha treatment. On the other hand, the activity of pyruvate carboxylase was 20-100% greater after 6 h of TNF-alpha treatment than in the L929 cells. The activity of phosphoenolpyruvate carboxykinase of bcl-2 trasfected L929 cells was lower by up to 25% than in L929 cells after 12 h. The increase of pyruvate carboxylase activity and decrease of phosphoenolpyruvate carboxykinase activity in bcl-2 transfected L929 cells may contribute to the protective effects of bcl-2 against TNF-alpha mediated cytotoxicity.  相似文献   

12.
Enfenamic acid, a new non-steroidal anti-inflammatory drug was studied for its effect on hepatic gluconeogenesis and some of the enzymes involved in this process in mice. Incubation of liver cells in the presence of 1.0 mM enfenamic acid inhibited the output of glucose. And also the in vitro addition of various concentrations of enfenamic acid (0.25 to 3.0 mM) to the tissue extracts of liver inhibited the activities of important gluconeogenic enzymes such as pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK) and fructose 1,6-diphosphatase (FDPase). The oral and intraperitoneal administrations of the drug for 15 and 3 days respectively, exhibited significant decrease in the hepatic PC, PEPCK and FDPase. These findings indicated that the impairment of gluconeogenesis might be due to the inactivation of the enzymes by the drug.  相似文献   

13.
S Kacew  R L Singhal 《Life sciences》1973,13(10):1363-1371
Administration of an acute oral dose of p,p′-DDT (600 mg/kg), α-chlordane (200 mg/kg), heptachlor (200 mg/kg) and endrin (50 mg/kg) produced a significant rise in the concentration of serum glucose and urea and a lowering of hepatic glycogen. In addition, treatment with either of these insecticides significantly increased the activities of hepatic and renal pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose 1,6-diphosphatase and glucose 6-phosphatase, the four enzymes which play a key, rate-limiting role in the process of gluconeogenesis. Treatment with p,p′-DDT, α-chlordane, heptachlor or endrin proved equally effective in elevating the levels of endogenous cyclic AMP and augmenting the activity of basal- and fluoride-stimulated forms of adenyl cyclase in both tissues. Whereas renal phosphodiesterase was decreased slightly by p,p′-DDT, the activity of this cyclic AMP-degrading enzyme remained unaltered following the administration of other pesticides. Our data indicate that the pesticide-induced alterations in carbohydrate metabolism of liver and kidney may be associated with an enhanced ability of these organs to synthesize cyclic AMP.  相似文献   

14.
Escherichia coli NZN111, which lacks activities for pyruvate-formate lyase and lactate dehydrogenase, and AFP111, a derivative which contains an additional mutation in ptsG (a gene encoding an enzyme of the glucose phophotransferase system), accumulate significant levels of succinic acid (succinate) under anaerobic conditions. Plasmid pTrc99A-pyc, which expresses the Rhizobium etli pyruvate carboxylase enzyme, was introduced into both strains. We compared growth, substrate consumption, product formation, and activities of seven key enzymes (acetate kinase, fumarate reductase, glucokinase, isocitrate dehydrogenase, isocitrate lyase, phosphoenolpyruvate carboxylase, and pyruvate carboxylase) from glucose for NZN111, NZN111/pTrc99A-pyc, AFP111, and AFP111/pTrc99A-pyc under both exclusively anaerobic and dual-phase conditions (an aerobic growth phase followed by an anaerobic production phase). The highest succinate mass yield was attained with AFP111/pTrc99A-pyc under dual-phase conditions with low pyruvate carboxylase activity. Dual-phase conditions led to significant isocitrate lyase activity in both NZN111 and AFP111, while under exclusively anaerobic conditions, an absence of isocitrate lyase activity resulted in significant pyruvate accumulation. Enzyme assays indicated that under dual-phase conditions, carbon flows not only through the reductive arm of the tricarboxylic acid cycle for succinate generation but also through the glyoxylate shunt and thus provides the cells with metabolic flexibility in the formation of succinate. Significant glucokinase activity in AFP111 compared to NZN111 similarly permits increased metabolic flexibility of AFP111. The differences between the strains and the benefit of pyruvate carboxylase under both exclusively anaerobic and dual-phase conditions are discussed in light of the cellular constraint for a redox balance.  相似文献   

15.
16.
The possibility whether alterations in the cyclic AMP-adenylate cyclase-phosphodiesterase system play a role in the action of 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT) on hepatic and renal carbohydrate metabolism was investigated. Administration of exogenous cyclic AMP (10mg/100g) was found to mimic the action of DDT which enhanced the activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase, fructose 1,6-diphosphatase and glucose 6-phosphatase in both liver and kidney cortex, elevated the concentration of blood glucose and urea and decreased the amount of hepatic glycogen. Treatment with theophylline augmented the effects of a submaximal dose of this halogenated hydrocarbon on serum urea and glucose as well as the key gluconeogenic enzymes in liver and kidney cortex. Addition of DDT in vitro to liver and kidney homogenates resulted in a significant enhancement of adenylate cyclase activity. Hepatic and renal slices from rats already treated with DDT displayed an increased ability to convert [(3)H]adenosine into cyclic [(3)H]AMP. Whereas kidney-cortex slices excised from rats given caffeine and DDT produced an even greater amount of cyclic [(3)H]AMP, imidazole, propranolol and hydrazine prevented the insecticide-stimulated rise in cyclic nucleotide production. In contrast, prostaglandin E(1) failed to exert any significant effect on DDT-induced increases in cyclic [(3)H]AMP synthesis from radioactive adenosine. The present study and our previous findings (Kacew & Singhal, 1973e) support the concept that the DDT-induced alterations in carbohydrate metabolism of liver and kidney cortex may be related to an initial stimulation of the cyclic AMP-adenylate cyclase system in these tissues.  相似文献   

17.
Anaerobically grown Staphylococcus epidermidis fermented glucose with the production of lactate and trace amounts of acetate, formate and CO2. Isotopic and inhibitor studies, assays for key enzymes of different metabolic pathways, and fermentation balances, all indicated that glucose was metabolized principally via glycolysis and to a very limited extent by the hexose monophosphate oxidative pathway. Serine fermentation proceeded via deamination and dismutation yielding NH3 and equimolar amounts of lactate, acetate and CO2; small amounts of formate arose by the operation of pyruvate-formate lyase. Incorporation of 0.5% (w/v) glucose in the growth medium depressed serine metabolism by repressing the activities of serine dehydratase and pyruvate dehydrogenase but, conversely, enhanced the activities of phosphofructokinase and lactate dehydrogenase. Glucose-grown organisms at various stages of anaerobic batch growth showed an inverse relationship between the rates of fermentation of serine and glucose. L-Lactate dehydrogenase activity in crude extracts depended on fructose 1,6-bisphosphate, and fructose 1,6-bisphosphate aldolase was found to be a class I aldolase. Despite the presence of ribokinase, D-ribose-5-phosphate isomerase, transaldolase and transketolase, the organisms utilized ribose only after growth aerobically in basal medium, and then at a slow rate after an initial lag period.  相似文献   

18.
1. Gluconeogenesis from lactate or pyruvate was studied in perfused livers from starved rats at perfusate pH7.4 or under conditions simulating uncompensated metabolic acidosis (perfusate pH6.7-6.8). 2. In 'acidotic' perfusions gluconeogenesis and uptake of lactate or pyruvate were decreased. 3. Measurement of hepatic intermediate metabolites suggested that the effect of acidosis was exerted at a stage preceding phosphoenolpyruvate. 4. Total intracellular oxaloacetate concentration was significantly decreased in the acidotic livers perfused with lactate. 5. It is suggested that decreased gluconeogenesis in acidosis is due to substrate limitation of phosphoenolypyruvate carboxykinase. 6. The possible reasons for the fall in oxaloacetate concentration in acidotic livers are discussed; two of the more likely mechanisms are inhibition of the pyruvate carboxylase system and a change in the [malate]/[oxaloacetate] ratio due to the fall in intracellular pH.  相似文献   

19.
Alcaligenes eutrophus formed ribulosebisphosphate carboxylase (RuBPCase; EC 4.1.1.39) when grown on fructose. Addition of sodium fluoride (NaF) to fructose minimal medium resulted in a slightly decreased growth rate and a rapid fivefold increase in RuBPCase specific activity. With citrate, a glucogenic carbon source, RuBPCase was also formed, However, addition of NaF to cells growing on citrate resulted in a 50% decrease in RuBPCase specific activity. Among the enzymes of fructose catabolism, NaF (10 mM) inhibited enolase in vitro by 98% and gluconate 6-phosphate dehydratase by 87%. Inhibition of the dehydratase by NaF was insignificant in vivo, as determined with a mutant defective in phosphoglycerate mutase activity. Growth of this mutant on fructose was not inhibited by NaF, and only a minor increase in RuBPCase activity was observed. From these results, we concluded that the product of the enolase reaction, phosphoenolpyruvate, played a role in RuBPCase formation. Addition of H2 or formate to the wild type growing on fructose or citrate did not affect the growth rate but resulted in rapid formation of RuBPCase activity. Mutants impaired in H2 metabolism formed RuBPCase at a low rate during growth on fructose plus H2 but at a high rate on formate. Apparently, additional reductant from H2 or formate metabolism induced RuBPCase formation in A. eutrophus.  相似文献   

20.
1. The activities of pyruvate carboxylase, phosphoenolpyruvate carboxylase and fructose diphosphatase in crude homogenates of vertebrate and invertebrate muscles are reported. 2. Pyruvate carboxylase activity was present in all insect flight muscles that were investigated: in homogenates of bumble-bee flight muscle the activity was inhibited by ADP and activated by acetyl-CoA, and it was distributed mainly in the mitochondrial fraction. This is the first demonstration of pyruvate carboxylase activity in muscle. However, the activity appears to be restricted to insect flight muscle, since it was not found in other invertebrate or vertebrate muscles. 3. Since the three enzymes were never found together in the same muscle, it is concluded that these enzymes cannot provide a pathway for the synthesis of glycogen from lactate or pyruvate in muscle. Other roles for these enzymes in muscle are suggested. In particular, pyruvate carboxylase may be present in insect flight muscle for the provision of oxaloacetate to support the large increase in activity of the tricarboxylic acid cycle which occurs when an insect takes flight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号