首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Georgopoulos S  McKee A  Kan HY  Zannis VI 《Biochemistry》2002,41(30):9293-9301
Apolipoprotein E (apoE) isoforms are key determinants of susceptibility to late-onset Alzheimer's disease (AD). The epsilon 4 and epsilon 2 alleles have been associated with increased and decreased risk for AD, respectively. We have generated and characterized transgenic mice in which the human apoE2 gene is expressed under the control of the platelet-derived growth factor B-chain (PDGF-B) promoter, or the transferrin (TF) promoter. S1 nuclease analysis and immunoblotting showed that the PDGF-B apoE2 mice express apoE2 exclusively in the brain whereas the TF apoE2 mice express apoE2 in the liver and in the brain. In the TF apoE2 mouse line, apoE2 is also detected in the plasma. The PDGF-B apoE2 and the TF apoE2 transgenic mice were bred back to apoE(-)(/)(-) background. Immunohistochemical analysis showed that the PDGF apoE2 x apoE(-)(/)(-) and the TF apoE2 x apoE(-)(/)(-) mice express human apoE2 within the neocortex in hippocampal neurons and glial cells, respectively. ApoE(-)(/)(-) mice have been shown to develop age-dependent loss of synaptophysin. Immunoblotting of mouse brain extracts and immunohistochemical analysis of brain sections showed that apoE expression in both apoE2 x apoE(-)(/)(-) transgenic lines was associated with significant recovery of brain synaptophysin levels as compared to the levels of apoE(-)(/)(-) littermates of the same age. These apoE2-expressing mice, when bred back on amyloid precursor protein (APP) transgenic mice or other mouse lines featuring alterations in lipoprotein metabolism, may provide new mouse models for elucidating the role of apoE2 in lipid homeostasis in the brain and in the pathogenesis of AD.  相似文献   

2.
Apolipoprotein E (apoE) genotype has a major influence on the risk for Alzheimer disease (AD). Different apoE isoforms may alter AD pathogenesis via their interactions with the amyloid beta-peptide (Abeta). Mice lacking the lipid transporter ABCA1 were found to have markedly decreased levels and lipidation of apoE in the central nervous system. We hypothesized that if Abca1-/- mice were bred to the PDAPP mouse model of AD, PDAPP Abca1-/ mice would have a phenotype similar to that of PDAPP Apoe+/- and PDAPP Apoe-/- mice, which develop less amyloid deposition than PDAPP Apoe+/+ mice. In contrast to this prediction, 12-month-old PDAPP Abca -/- mice had significantly higher levels of hippocampal Abeta, and cerebral amyloid angiopathy was significantly more common compared with PDAPP Abca1+/+ mice. Amyloid precursor protein (APP) C-terminal fragments were not different between Abca1 genotypes prior to plaque deposition in 3-month-old PDAPP mice, suggesting that deletion of Abca1 did not affect APP processing or Abeta production. As expected, 3-month-old PDAPP Abca1-/- mice had decreased apoE levels, but they also had a higher percentage of carbonate-insoluble apoE, suggesting that poorly lipidated apoE is less soluble in vivo. We also found that 12-month-old PDAPP Abca1-/- mice had a higher percentage of carbonate-insoluble apoE and that apoE deposits co-localize with amyloid plaques, demonstrating that poorly lipidated apoE co-deposits with insoluble Abeta. Together, these data suggest that despite substantially lower apoE levels, poorly lipidated apoE produced in the absence of ABCA1 is strongly amyloidogenic in vivo.  相似文献   

3.
Apolipoprotein E (apoE) is one of the protein moieties of the human serum lipoproteins. Three major isoforms of apoE (apoE2, apoE3, and apoE4) and minor variant isoforms (apoE1, apoE5, and apoE7) have been detected by isoelectric focusing. In this study we have cloned the apoE7 gene from a patient with the apoE3/E7 phenotype associated with hypertriglyceridemia and diabetes mellitus. DNA sequencing revealed that the apoE7 gene has two base substitutions (G----A) changing Glu244,245----Lys244,245, compared with the apoE3 gene. The replacement of the two amino acids is consistent with the result of isoelectric focusing of the apoE7 isoprotein, which shifts to four positively charged units compared with the apoE3 isoprotein.  相似文献   

4.
Apolipoprotein E (apoE) is a key regulator of cholesterol homeostasis. Human apoE has three common isoforms, each with different risk implications for cardiovascular and neurodegenerative disease. Neither the structure of lipoprotein E particles nor the structural consequences of the isoform differences are known. In this investigation, synthetic lipoprotein particles were prepared by complexing phospholipids with full-length apoE isoforms, or with truncated N-terminal and C-terminal domains of apoE. These particles were examined with calorimetry, electron microscopy, circular dichroism spectroscopy, and internal reflection infrared spectroscopy. Results indicate that particles made with the three full-length apoE isoforms are discoidal in shape, and structurally indistinguishable. Thus, differences in their pathological consequences are not due to gross differences in particle structure. Although apoE is predominantly helical, and the axes of the helices are parallel to the flat surfaces of the particles, the orientational order of lipid acyl chains is low and inconsistent with the belt model of lipoprotein A-I structure. Instead, the data suggest that there are at least two different types of apoE-lipid interactions within lipoprotein E particles. One type occurs between apoE helices and the edge of the lipid bilayer as in the belt model, while a second type involves apoE helices that situate in the plane of the membrane and disturb acyl chain order. These interactions allow LpE particles to form with different protein/lipid ratios, and they account for the structure of LpE particles made with only the truncated domains.  相似文献   

5.
Abstract: Apolipoprotein (apo) E is likely involved in redistributing cholesterol and phospholipids during compensatory synaptogenesis in the injured CNS. Three common isoforms of apoE exist in human (E2, E3, and E4). The apoE4 allele frequency is markedly increased in both late-onset sporadic and familial Alzheimer's disease (AD). ApoE concentration in the brain of AD subjects follows a gradient: ApoE levels decrease as a function of E2 > E3 ? E4. It has been proposed that the poor reinnervation capacity reported in AD may be caused by impairment of the apoE/low-density lipoprotein (LDL) receptor activity. To understand further the role of this particular axis in lipid homeostasis in the CNS, we have characterized binding, internalization, and degradation of human 125I-LDL to primary cultures of rat astrocytes. Specific binding was saturable, with a KD of 1.8 nM and a Bmax of 0.14 pmol/mg of proteins. Excess unlabeled human LDL or very LDL (VLDL) displaced 70% of total binding. Studies at 37°C confirmed that astrocytes bind, internalize, and degrade 125I-LDL by a specific, saturable mechanism. Reconstituted apoE (E2, E3, and E4)-liposomes were labeled with 125I and incubated with primary cultures of rat astrocytes and hippocampal neurons to examine specific binding. Human LDL and VLDL displaced binding and internalization of all apoE isoforms similarly in both astrocytes and neurons. 125I-ApoE2 binding was significantly lower than that of the other 125I-apoE isoforms in both cell types. 125I-ApoE4 binding was similar to that of 125I-apoE3 in both astrocytes and neurons. On the other hand, 125I-apoE3 binding was significantly higher in neurons than in astrocytes. These isoform-specific alterations in apoE-lipoprotein pathway could explain some of the differences reported in the pathophysiology of AD subjects carrying different apoE alleles.  相似文献   

6.
Apolipoprotein E (apoE, protein; APOE, gene) is important in lipoprotein metabolism. Three isoforms, apoE2 (Cys112 Cys158), apoE3 (Cys112 Arg158), and apoE4 (Arg112 Arg158), are present in the general population. This report investigates the frequency distribution of apoE isoforms and the association of APOE genotypes with plasma lipid profile and coronary heart disease (CHD) in a population of Taiwan. ApoE isoforms were determined genetically by polymerase chain reaction and HhaI restriction enzyme digestion in control and coronary heart disease (CHD) patients. Plasma lipid and lipoprotein concentrations were also determined. The control group exhibited frequencies of 84.6% APOE3, 7.9% APOE4, 7.5% APOE2, 70.6% APOE3E3, 14.4% APOE3E4, 13.6% APOE2E3, and 1.4% APOE2E4. Comparable frequencies were observed in the CHD group. In both APOE2 carrier and APOE3E3 groups, the CHD patients expressed abnormal lipid profiles while the control group expressed normal lipid profiles. The APOE4 carriers, however, expressed abnormal lipid profiles in both normal control and CHD groups. Extremely high apoE levels in the hypertriglyceridemic group (TG > 400 mg/dL) seemed to be undesirable and were often observed in CHD patients.  相似文献   

7.
Apolipoprotein (apo) E4 is a major risk factor for Alzheimer and cardiovascular diseases. ApoE4 differs from the two other common isoforms (apoE2 and apoE3) by its lower resistance to denaturation and greater propensity to form partially folded intermediates. As a first step to determine the importance of stability differences in vivo, we reengineered a partially humanized variant of the amino-terminal domain of mouse apoE (T61R mouse apoE) to acquire a destabilized conformation like that of apoE4. For this process, we determined the crystal structure of wild-type mouse apoE, which, like apoE4, forms a four-helix bundle, and identified two structural differences in the turn between helices 2 and 3 and in the middle of helix 3 as potentially destabilizing sites. Introducing mutations G83T and N113G at these sites destabilized the mouse apoE conformation. The mutant mouse apoE more rapidly remodeled phospholipid than T61R mouse apoE, which supports the hypothesis that a destabilized conformation promotes apoE4 lipid binding.  相似文献   

8.
Apolipoprotein E (apoE) is a 34 kDa glycosylated protein with multiple biological properties. In addition to its role in cholesterol transport, apoE has in vitro immunomodulatory properties. Recent data suggest that these immunomodulatory effects of apoE may be biologically relevant, and apoE-deficient mice have altered immune responses after bacterial inoculation and increased susceptibility to endotoxemia induced by lipopolysaccharide (LPS). To better understand the mechanism by which apoE-modulates immune responses, we tested the role of human apoE isoforms in assays of human T cell proliferation, and analyzed the immune responses of apoE-deficient mice. Both the E3 and E4 isoforms of apoE induced similar suppression of human lymphocyte function in assays of T cell proliferation, including mitogenic responses to phytohaemagglutin (PHA), stimulation of the T cell receptor with alphaCD3, and antigen-specific response to tetanus toxoid. ApoE-deficient mice showed no quantitative differences in thymic, splenic, or bone marrow lymphocyte populations, nor were there in vitro abnormalities in splenocyte proliferation after stimulation with alphaCD3 to suggest an inherent T cell defect in apoE-deficient mice. ApoE deficient animals, however, had significantly higher levels of antigen-specific IgM after immunization with tetanus toxoid, and impaired delayed type hypersensitivity responses as compared to control C57-BL/6 mice.These results support a growing body of evidence demonstrating an interplay between lipid metabolism and immune responses, and suggest that apoE plays a biologically relevant role in regulating humoral and cell-mediated immunity.  相似文献   

9.
Apolipoprotein (apo) E4 is the major genetic risk factor for late-onset Alzheimer disease (AD). ApoE4 assumes a pathological conformation through an intramolecular interaction mediated by Arg-61 in the amino-terminal domain and Glu-255 in the carboxyl-terminal domain, referred to as apoE4 domain interaction. Because AD is associated with mitochondrial dysfunction, we examined the effect of apoE4 domain interaction on mitochondrial respiratory function. Steady-state amounts of mitochondrial respiratory complexes were examined in neurons cultured from brain cortices of neuron-specific enolase promoter-driven apoE3 (NSE-apoE3) or apoE4 (NSE-apoE4) transgenic mice. All subunits of mitochondrial respiratory complexes assessed were significantly lower in NSE-apoE4 neurons compared with NSE-apoE3 neurons. However, no significant differences in levels of mitochondrial complexes were detected between astrocytes expressing different apoE isoforms driven by the glial fibrillary acidic protein promoter, leading to our conclusion that the effect of apoE4 is neuron specific. In neuroblastoma Neuro-2A (N2A) cells, apoE4 expression reduced the levels of mitochondrial respiratory complexes I, IV, and V. Complex IV enzymatic activity was also decreased, lowering mitochondrial respiratory capacity. Mutant apoE4 (apoE4-Thr-61) lacking domain interaction did not induce mitochondrial dysfunction in N2A cells, indicating that the effect is specific to apoE4-expressing cells and dependent on domain interaction. Consistent with this finding, treatment of apoE4-expressing N2A cells with a small molecule that disrupts apoE4 domain interaction restored mitochondrial respiratory complex IV levels. These results suggest that pharmacological intervention with small molecules that disrupt apoE4 domain interaction is a potential therapeutic approach for apoE4-carrying AD subjects.  相似文献   

10.
Apolipoprotein E (apoE) associates with lipoproteins and mediates their interaction with members of the LDL receptor family. ApoE exists as three common isoforms that have important distinct functional and biological properties. Two apoE isoforms, apoE3 and apoE4, are recognized by the LDL receptor, whereas apoE2 binds poorly to this receptor and is associated with type III hyperlipidemia. In addition, the apoE4 isoform is associated with the common late-onset familial and sporadic forms of Alzheimer's disease. Although the interaction of apoE with the LDL receptor is well characterized, the specificity of other members of this receptor family for apoE is poorly understood. In the current investigation, we have characterized the binding of apoE to the VLDL receptor and the LDL receptor-related protein (LRP). Our results indicate that like the LDL receptor, LRP prefers lipid-bound forms of apoE, but in contrast to the LDL receptor, both LRP and the VLDL receptor recognize all apoE isoforms. Interestingly, the VLDL receptor does not require the association of apoE with lipid for optimal recognition and avidly binds lipid-free apoE. It is likely that this receptor-dependent specificity for various apoE isoforms and for lipid-free versus lipid-bound forms of apoE is physiologically significant and is connected to distinct functions for these receptors.  相似文献   

11.
Su KL  Wen TH  Chou CY  Chang GG  Liu GY  Hung HC 《Proteins》2007,68(1):363-374
A growing amount of evidence implicates the involvement of apolipoprotein E (apoE) in the development of late-onset and sporadic forms of Alzheimer's disease (AD). It is now generally believed that the epsilon4 allele is associated with AD and the oxidative stress is more pronounced in AD. However, only limited data are available on apoE isoform-specificity and its relationship to both the oxidative susceptibility and conformational stability of apoE. In this article, we use site-directed mutagenesis to investigate the structural role of amino acid residue 112, which is the only differing residue between apoE3 and E4. We examine the structural variation manipulating the oxidative susceptibility and conformational stability of apolipoprotein E isoforms. Arg112 in apoE4 was changed to Ala and Glu. Previous research has reported that apoE4 is more susceptible to free radicals than apoE3. In protein oxidation experiments, apoE4-R112A becomes more resistant to free radicals to the same extent as apoE3. In contrast, apoE4-R112E becomes the most susceptible protein to free radicals among all the apoE proteins. We also examine the conformational stability and the quaternary structural change by fluorescence spectroscopy and analytical ultracentrifugation, respectively. ApoE3 and E4 show apparent three- and two-state unfolding patterns, respectively. ApoE4-R112A, similar to apoE3, demonstrates a biphasic denaturation with an intermediate that appears. The denaturation curve for apoE4-R112E, however, also displays a biphasic profile but with a slight shoulder at approximately 1.5M GdmCl, implying that an unstable intermediate existed in the denaturation equilibrium. The size distribution of apoE isoforms display similar patterns. ApoE4-R112E, however, has a greater tendency to dissociate from high-molecular-weight species to tetramers. These experimental data suggest that the amino acid residue 112 governs the differences in salt-bridges between these two isoforms and thus has a significant impact on the free radical susceptibility and structural variation of the apoE isoforms.  相似文献   

12.
Apolipoprotein E4 (apoE4) encoded by epsilon 4 allele is a strong genetic risk factor for Alzheimer's disease (AD). ApoE4 carriers have accelerated amyloid beta-protein (A beta) deposition in their brains, which may account for their unusual susceptibility to AD. We hypothesized that the accelerated A beta deposition in the brain of apoE4 carriers is mediated through cholesterol-enriched low-density membrane (LDM) domains. Thus, the concentrations of A beta and various lipids in LDM domains were quantified in the brains of homozygous apoE3 and apoE4 knock-in (KI) mice, and in the brains of those mice bred with beta-amyloid precursor protein (APP) transgenic mice (Tg2576). The A beta 40 and A beta 42 concentrations and the A beta 42 proportions in LDM domains did not differ between apoE3 and apoE4 KI mice up to 18 months of age. The A beta 40 concentration in the LDM domains was slightly, but significantly higher in apoE3/APP mice than in apoE4/APP mice. The lipid composition of LDM domains was modulated in an apoE isoform-specific manner, but its significance for A beta deposition remains unknown. These data show that the apoE isoform-specific effects on the A beta concentration in LDM domains do not occur in KI mouse models.  相似文献   

13.
Apolipoprotein E (apoE), a key lipid transport protein, displays a heparin-binding property that is critical in several apoE functions. The kinetics of the interaction between apoE isoforms and glycosaminoglycans (GAGs) were studied using surface plasmon resonance. The dissociation constant of equilibrium K(D) for apoE3-heparin interaction was estimated to be 12 nM for apoE3 and three common apoE isoforms revealed similar affinities for heparin. ApoE binds to GAGs in the following order: heparin>heparan sulfate>dermatan sulfate>chondroitin sulfate. The affinity parameter of the binding of low molecular weight heparins to apoE is correlated with the chain length. The effective number Z of electrostatic interactions between plasma apoE3 and heparin was assessed to be three. Metal chelators were able to diminish apoE-binding to heparin, suggesting some stabilizing effect of metal ions while reconstitution with lipids did not affect binding affinities for heparin, suggesting that the N-terminal heparin-binding site is responsible for apoE-containing lipoprotein interactions with heparin.  相似文献   

14.
ApoE4 (apolipoprotein E4) is the major known genetic risk factor for AD (Alzheimer's disease). In most clinical studies, apoE4 carriers account for 65-80% of all AD cases, highlighting the importance of apoE4 in AD pathogenesis. Emerging data suggest that apoE4, with its multiple cellular origins and multiple structural and biophysical properties, contributes to AD in multiple ways either independently or in combination with other factors, such as Aβ (amyloid β-peptide) and tau. Many apoE mouse models have been established to study the mechanisms underlying the pathogenic actions of apoE4. These include transgenic mice expressing different apoE isoforms in neurons or astrocytes, those expressing neurotoxic apoE4 fragments in neurons and human apoE isoform knock-in mice. Since apoE is expressed in different types of cells, including astrocytes and neurons, and in brains under diverse physiological and/or pathophysiological conditions, these apoE mouse models provide unique tools to study the cellular source-dependent roles of apoE isoforms in neurobiology and in the pathogenesis of AD. They also provide useful tools for discovery and development of drugs targeting apoE4's detrimental effects.  相似文献   

15.
Apolipoprotein E (apoE) plays an important role in the response to central nervous system injury. The e4 allele of apoE and amyloid beta-peptide (Abeta) are associated with Alzheimer's disease (AD) and may be central to the pathogenesis of this disorder. Recent studies demonstrate evidence for neurodegeneration and increased lipid peroxidation in transgenic mice lacking apoE (KO). In the current study, synaptosomes were prepared from apoE KO mice to determine the role of apoE in synaptic membrane structure and to determine susceptibility to oxidative damage by Abeta(1-40). ApoE KO mice exhibited structural modifications to lipid and protein components of synaptosomal membranes as determined by electron paramagnetic resonance in conjunction with lipid- and protein- specific spin labels. Incubation with 5 microM Abeta(1-40) resulted in more severe oxidative modifications to proteins and lipids in apoE KO synaptosomes as measured by protein carbonyls, an index of protein oxidation, and TBARs and protein-bound 4-hydroxynonenal (HNE), markers of lipid oxidation. Together, these data support a role for apoE in the modulation of oxidative injury and in the maintenance of synaptic integrity and are discussed with reference to alterations in AD brain.  相似文献   

16.
Extracellular amyloid plaques, intracellular neurofibrillary tangles, and loss of basal forebrain cholinergic neurons in the brains of Alzheimer's disease (AD) patients may be the end result of abnormalities in lipid metabolism and peroxidation that may be caused, or exacerbated, by beta-amyloid peptide (Abeta). Apolipoprotein E (apoE) is a major apolipoprotein in the brain, mediating the transport and clearance of lipids and Abeta. ApoE-dependent dendritic and synaptic regeneration may be less efficient with apoE4, and this may result in, or unmask, age-related neurodegenerative changes. The increased risk of AD associated with apoE4 may be modulated by diet, vascular risk factors, and genetic polymorphisms that affect the function of other transporter proteins and enzymes involved in brain lipid homeostasis. Diet and apoE lipoproteins influence membrane lipid raft composition and the properties of enzymes, transporter proteins, and receptors mediating Abeta production and degradation, tau phosphorylation, glutamate and glucose uptake, and neuronal signal transduction. The level and isoform of apoE may influence whether Abeta is likely to be metabolized or deposited. This review examines the current evidence for diet, lipid homeostasis, and apoE in the pathogenesis of AD. Effects on the cholinergic system and response to cholinesterase inhibitors by APOE allele carrier status are discussed briefly.  相似文献   

17.
Apolipoprotein E: a major piece in the Alzheimer's disease puzzle   总被引:5,自引:1,他引:4  
Alzheimer's disease (AD) is a complex neurodegenerative disorder with multiple etiologies. The presence of the E4 isoform of apolipoprotein E (apoE) has been shown to increase the risk and to decrease the age of onset for AD and is the major susceptibility factor known for the disease. ApoE4 has been shown to intensify all the biochemical distrubances characteristic of AD, including beta amyloid (Aβ) deposition, tangle formation, neuronal cell death, oxidative stress, synaptic plasticity and dysfunctions of lipid homeostasis and cholinergic signalling. In contrast, other apoE isoforms are protective. Here we review and discuss these major hypotheses of the apoE4-AD association.  相似文献   

18.
Apolipoprotein E (apoE) plays a role in the distribution of lipid within many organs and cell types in the human body, including the central nervous system (CNS). The apoE4 isoform is also an established risk factor for late-onset Alzheimer's disease (AD), however its role in the aetiology of the disease remains largely unknown. Therefore, as AD is a late-onset disease, we sort to investigate how conditions hypothesised to model ageing affect apoE metabolism, such as the transport of apoE along the secretory pathway. Two of these models include oxidative stress and calcium deregulation. Using apoE-EGFP-expressing astrocytoma cell lines we established that vesicle number and velocity are up-regulated under oxidative stress conditions, and slowed under KCl induced calcium deregulation. Although these findings apply to cells in general under these two stress conditions, the up-regulation of apoE in particular may be a response to cell injury with implications for neurodegeneration such as that found with late-onset AD.  相似文献   

19.
Apolipoprotein E (apoE) isoforms have different affinity to lipoprotein (LP) receptors and lipids. In comparison with the "normal" apoE3 the apoE2 affinity to receptors is strictly decreased influencing its association with hypoholesterolemia and accumulation of LP of very-low density in the plasma. The apoE4 is characterized by the increased affinity to LP receptors and is associated with hyperholesterolemia (HCHL). In the homozygotes on allele E2 the gender, age, obesity, diabetes and some other factors have an influence on conversion of hypoholesterolemia to type Ill hyperlipidemia. The ApoE4 association with HCHL may be due to its impaired recycling in hepatocytes. The ApoE isoforms influence the hypolipidemic therapy efficacy: statins and physical training were more effective in epsilon2 allele carriers and probucol and low-fat diet had the maximal effect in epsilon4 allele carriers.  相似文献   

20.
Three isoforms of human plasma apolipoprotein E (apoE) are ligands to lipoprotein receptors and influence in different manner the synthesis and catabolism of pro-atherogenic triglyceride-rich lipoproteins. Among three isoforms, the apoE4 isoform is associated with increased frequency of atherosclerosis and Alzheimer’s disease (AD). The conformational transitions of β-amyloid (Aβ) influenced by apoE and serum amyloid P (SAP) component are key events in AD development, the accumulation of intermediate diffusible and soluble oligomers of Aβ being of particular significance. SAP and apoE, in a different manner for the three isoforms, serve as “pathological” chaperones during the aggregation of Aβ considered as a conformation-prone process. In turn, apoE consisting of two domains self-associates in solution and intermediate structures differently populated for the three isoforms exist. The different structures of the three isoforms determine their different distribution among various plasma lipoproteins. The structural and metabolic consideration of the common apoE pathway(s) in two pathologies assumes four molecular targets for AD correction: (i) inhibition of the accumulation of diffusible soluble Aβ oligomers; (ii) inhibition of apoE synthesis and secretion by astrocytes, in particular, under lipid-lowering therapy; (iii) inhibition of the binding of apoE and/or SAP to Aβ; (iv) stimulation of the expression of cholesterol transporter ABCA1. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 7, pp. 876–881.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号