首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Denys A  Aires V  Hichami A  Khan NA 《FEBS letters》2004,564(1-2):177-182
This study was conducted on human Jurkat T-cells to investigate the role of depletion of intracellular Ca(2+) stores in the phosphorylation of two mitogen-activated protein kinases (MAPKs), i.e. extracellular signal-regulated kinase (ERK) 1 and ERK2, and their modulation by a polyunsaturated fatty acid, docosahexaenoic acid (DHA). We observed that thapsigargin (TG) stimulated MAPK activation by store-operated calcium (SOC) influx via opening of calcium release-activated calcium (CRAC) channels as tyrphostin-A9, a CRAC channel blocker, and two SOC influx inhibitors, econazole and SKF-96365, diminished the action of the former. TG-stimulated ERK1/ERK2 phosphorylation was also diminished in buffer containing EGTA, a calcium chelator, further suggesting the implication of calcium influx in MAPK activation in these cells. Moreover, TG stimulated the production of diacylglycerol (DAG) by activating phospholipase D (PLD) as propranolol (PROP) (a PLD inhibitor), but not U73122 (a phospholipase C inhibitor), inhibited TG-evoked DAG production in these cells. DAG production and protein kinase C (PKC) activation were involved upstream of MAPK activation as PROP and GF109203X, a PKC inhibitor, abolished the action of TG on ERK1/ERK2 phosphorylation. Furthermore, DHA seems to act by inhibiting PKC activation as this fatty acid diminished TG- and phorbol 12-myristate 13-acetate-induced ERK1/ERK2 phosphorylation in these cells. Together these results suggest that Ca(2+) influx via CRAC channels is implicated in PLD/PKC/MAPK activation which may be a target of physiological agents such as DHA.  相似文献   

2.
Stimulation of platelets with thrombin leads to rapid degradation of inositol phospholipids, generation of diacylglycerol (DAG) and subsequent activation of protein kinase C (PKC). Previous studies indicated that prior activation of PKC with phorbol myristate acetate (PMA) desensitizes platelets to thrombin stimulation, as indicated by a decreased production of inositol phosphates and decreased Ca2+ mobilization. This suggests that PKC activation generates negative-feedback signals, which limit the phosphoinositide response. To test this hypothesis further, we examined the effects of PKC activators and inhibitors on thrombin-stimulated DAG mass formation in platelets. Pretreatment with PMA abolishes thrombin-stimulated DAG formation (50% inhibition at 60 nM). Pretreatment of platelets with the PKC inhibitors K252a or staurosporine potentiates DAG production in response to thrombin (3-4-fold) when using concentrations required to inhibit platelet PKC (1-10 microM). K252a does not inhibit phosphorylation of endogenous DAG or phosphorylation of a cell-permeant DAG in unstimulated platelets, indicating that DAG over-production is not due to inhibition of DAG kinase. Sphingosine, a PKC inhibitor with a different mechanism of action, also potentiates DAG formation in response to thrombin. Several lines of evidence indicate that DAG formation under the conditions employed occurs predominantly by phosphoinositide (and not phosphatidylcholine) hydrolysis: (1) PMA alone does not elicit DAG formation, but inhibits agonist-stimulated DAG formation; (2) thrombin-stimulated DAG formation is inhibited by neomycin (1-10 mM) but not by the phosphatidate phosphohydrolase inhibitor propranolol; and (3) no metabolism of radiolabelled phosphatidylcholine was observed upon stimulation by thrombin or PMA. These data provide strong support for a role of PKC in limiting the extent of platelet phosphoinositide hydrolysis.  相似文献   

3.
Physiologic activation of protein kinase C limits IL-2 secretion   总被引:2,自引:0,他引:2  
Interaction of Ag, antibodies against the T cell receptor complex, or mitogenic lectins with T lymphocytes induces hydrolysis of membrane phospholipids leading to the production of diacylglycerol (DAG). DAG then activates the Ca2+- and phospholipid-dependent phosphotransferase, protein kinase C (PKC). Increases in DAG concentrations are transient as is the increase in PKC activity. Phorbol esters, which induce potent, prolonged activation of PKC, augment many T lymphocyte responses, including cell proliferation and secretion of the T cell growth factor IL-2. Therefore, it has been suggested that activation of PKC is a positive regulatory signal in T lymphocytes. We have determined the consequences of transient stimulation of PKC, and of depletion of PKC, on early cell activation signals and on production of IL-2 by the murine lymphoma line LBRM 331A5. When this cell line is depleted of PKC overnight incubation in high concentrations of phorbol esters, lectin-induced IL-2 secretion is augmented. Similarly, mitogen-induced changes in [Ca2+]i and phosphoinositide metabolism were augmented in these cells. In contrast, a short preactivation of PKC abrogated these early transmembrane signaling events. This suggested that normal physiologic activation of PKC may limit cell activation and decrease IL-2 production. We compared the effects of phorbol esters and mezerein, which produce prolonged activation of PKC, with those of diacylglycerol analogs, which induce transient activation of PKC. At concentrations that give similar levels of PKC activation, phorbol esters and mezerein, but not DAG analogs, increased IL-2 secretion. This suggests that prolonged, nonphysiologic activation of PKC is required to augment IL-2 secretion. Therefore, physiologic activation of PKC may not augment T cell activation but instead may function to decrease cell activation and limit IL-2 secretion.  相似文献   

4.
Interleukin-2 (IL-2) plays a vital role in the generation and regulation of the immune response, including important aspects of T cell survival. IL-2-mediated survival of T cells appears to be dependent on the activation of a pool of membrane-associated protein kinase C (PKC) that occurs in the absence of detectable translocation of the enzyme from the cytosol to membranes. In this report we investigate the mechanism(s) responsible for this PKC activation after IL-2 stimulation in the cytotoxic T cell line, CTLL-2. Tyrosine kinase activity, activated after IL-2 stimulation, was found not to be linked to the activation of PKC by the cytokine. On the other hand, a pertussis toxin (PTX)-sensitive G protein did appear coupled to PKC activation since PTX effectively blocked IL-2 stimulated PKC activity. Diacylglycerols (DAG), but not inositol 1,3,5-triphosphate (IP3) and intracellular Ca2+, increased after IL-2 stimulation suggesting that DAGs were generated via the phosphatidylcholine-phospholipase C (PC-PLC) or phosphatidylcholine-phospholipase D (PC-PLD) pathways. The increase in DAG by IL-2 was probably necessary for activation of membrane-resident PKC since exogenously applied DAG stimulated this PKC pool in both intact cells and in isolated membranes. IL-2 also increased arachidonic acid (AA) production in CTLL-2 cells, probably via phospholipase A2 (PLA2) since the PLA2 inhibitors oleoyloxyethyl phosphocholine and AACOCF3 (AACF) effectively blocked IL-2 stimulated PKC activation. Exogenous AA also increased PKC activity in intact cells and isolated membranes, suggesting that AA produced by IL-2 receptor stimulation was probably linked to PKC activation. These results suggest that the activation of membrane-resident PKC by IL-2 involves multiple second messengers, including G proteins, DAG and AA.  相似文献   

5.
ACh-induced contraction of esophageal circular muscle (ESO) depends on Ca2+ influx and activation of protein kinase Cepsilon (PKCepsilon). PKCepsilon, however, is known to be Ca2+ independent. To determine where Ca2+ is needed in this PKCepsilon-mediated contractile pathway, we examined successive steps in Ca2+-induced contraction of ESO muscle cells permeabilized by saponin. Ca2+ (0.2-1.0 microM) produced a concentration-dependent contraction that was antagonized by antibodies against PKCepsilon (but not by PKCbetaII or PKCgamma antibodies), by a calmodulin inhibitor, by MLCK inhibitors, or by GDPbetas. Addition of 1 microM Ca2+ to permeable cells caused myosin light chain (MLC) phosphorylation, which was inhibited by the PKC inhibitor chelerythrine, by D609 [phosphatidylcholine-specific phospholipase C inhibitor], and by propranolol (phosphatidic acid phosphohydrolase inhibitor). Ca2+-induced contraction and diacylglycerol (DAG) production were reduced by D609 and by propranolol, alone or in combination. In addition, contraction was reduced by AACOCF(3) (cytosolic phospholipase A(2) inhibitor). These data suggest that Ca2+ may directly activate phospholipases, producing DAG and arachidonic acid (AA), and PKCepsilon, which may indirectly cause phosphorylation of MLC. In addition, direct G protein activation by GTPgammaS augmented Ca2+-induced contraction and caused dose-dependent production of DAG, which was antagonized by D609 and propranolol. We conclude that agonist (ACh)-induced contraction may be mediated by activation of phospholipase through two distinct mechanisms (increased intracellular Ca2+ and G protein activation), producing DAG and AA, and activating PKCepsilon-dependent mechanisms to cause contraction.  相似文献   

6.
Xenopus laevis oocytes are a powerful tool for the characterization of signal transduction pathways leading to the induction of DNA synthesis. Since activation of PLA2, PLC, or PLD has been postulated as a mediator of ras function, we have used the oocyte system to study the putative functional relationship between ras-p21 and these phospholipases. A rapid generation of PA and DAG was observed after ras-p21 microinjection, suggesting the activation of both PLC and PLD enzymes. However, production of DAG was sensitive to inhibition of the PA-hydrolase by propranolol, indicating that PLD is the enzyme responsible for the generation of both PA and DAG. Microinjection of PLD or ras-p21 induced the late production of lysophosphatidylcholine on a p42MAPK-dependent manner, an indication of the activation of a PLA2. Inhibition of this enzyme by quinacrine does not inhibit PLD- or ras-induced GVBD, suggesting that PLA2 activation is not needed for ras or PLD function. Contrary to 3T3 fibroblasts, where ras-p21 is functionally dependent for its mitogenic activity on TPA- and staurosporine-sensitive PKC isoforms, in Xenopus oocytes, induction of GVBD by ras-p21 was independent of PKC, while PLC-induced GVBD was sensitive to PKC inhibition. Thus, our results demonstrate the activation of PLD and PLA2 by ras-p21 proteins, while no effect on PLC was observed.  相似文献   

7.
Ras-transformation of cells is accompanied by an increase of the level of diacylglycerol (DAG), which participates in the signal transduction pathways. DAG could be generated from phospholipids either by activation of phospholipase C or by a more complex pathway involving phospholipase D and phosphatidate phosphohydrolase. To clarify which phospholipids produce DAG and which pathways are involved, we examined the DAG generating enzyme activities, using phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) as substrates. The study showed that the breakdown of PC and more markedly of PE by phospholipases C and D was stimulated in membranes from ras-transformed cells. Phosphatidate phosphohydrolase activity was also elevated in oncogene-expressing cells. The increase in glycerol uptake was most pronounced in cells given PE, followed by PC. The fatty acid analysis revealed apparent similarities between the acyl chains of PE and DAG only in the transformed cells. These findings suggest that PE is a source of DAG in ras-fibroblasts but does not rule out the role of PC in DAG production, due to the activation of the PC-specific phospholipases C and D.  相似文献   

8.
T cell development in the thymus and activation of mature T cells in the periphery depend on signals stimulated by engagement of the T cell antigen receptor (TCR). Among the second messenger cascades initiated by TCR ligation include the phosphatidylinositol pathway where the membrane phospholipid, phosphatidylinositol 4,5-bisphosphate, is hydrolyzed to inositol 1,4,5-trisphosphate and diacylglycerol (DAG). Inositol 1,4,5-trisphosphate signals a rise in intracellular free calcium, leading to translocation of nuclear factor of activated T cells into the nucleus. DAG activates RasGRP and protein kinase C theta. Because both RasGRP and protein kinase C theta are essential for thymocyte and T cell function, it is critical to understand how DAG is regulated. In this report, we demonstrate expression of DAG kinase zeta (DGKzeta, the enzyme that catalyzes the conversion of DAG to phosphatidic acid) in multiple lymphoid organs, with highest expression observed within the T cell compartment. Overexpression studies in Jurkat T cells indicate that DGKzeta interferes with TCR-induced Ras and ERK activation, AP-1 induction, and expression of the activation marker CD69. In contrast, TCR-stimulated calcium influx is not altered. Mutational analysis indicates that the kinase and DAG binding domains, but not the ankyrin repeats of DGKzeta, are required for its inhibitory effects. Collectively these studies demonstrate a potential role of DGKzeta to function as a selective negative regulator of DAG signaling on T cell activation and provide the first structure/function analysis of this enzyme in T cells.  相似文献   

9.
The sphingolipids biosynthesis pathway generates bioactive molecules crucial to the regulation of physiological processes. We have recently reported that DAG (diacylglycerol) generated during sphingomyelin synthesis, plays an important role in PKC (protein kinase C) activation, necessary for the transit through the cell cycle (G1 to S transition) and cell proliferation (Cerbon and Lopez-Sanchez, 2003. Diacylglycerol generated during sphingomyelin synthesis is involved in protein kinase C activation and cell proliferation in Madin-Darby canine kidney cells. Biochem. J. 373, 917-924). Since pathogenic Entamoeba invadens synthesize the sphingolipids inositol-phosphate ceramide (IPC) and ethanolamine-phosphate ceramide (EPC) as well as sphingomyelin (SM), we decided to investigate when during growth initiation, the synthesis of sphingolipids takes place, DAG is generated and PKC is activated. We found that during the first 6 h of incubation there was a significant increase in the synthesis of all three sphingolipids, accompanied by a progressive increment (up to 4-fold) in the level of DAG, and particulate PKC activity was increased 4-8 times. The enhanced DAG levels coincided with decrements in the levels of sphingoid bases, conditions adequate for the activation of PKC. Moreover, we found that inhibition of sphingolipid synthesis with myriocin, specific inhibitor of the synthesis of sphinganine, reduce DAG generation, PKC activation and cell proliferation. All these inhibitory processes were restored by metabolic complementation with exogenous d-erythrosphingosine, indicating that the DAG generated during sphingolipid synthesis was necessary for PKC activation and cell proliferation. Also, we show that PI (phosphatidylinositol), PE (phosphatidylethanolamine) and PC (phosphatidylcholine) are the precursors of their respective sphingolipids (IPC, EPC and SM), and therefore sources of DAG to activate PKC.  相似文献   

10.
Role of protein kinase C in cellular regulation   总被引:5,自引:0,他引:5  
Protein kinase C (PKC) consists of a family of closely related enzymes ubiquitously present in animal tissues. These enzymes respond to second messengers, Ca2+, diacylglycerol and arachidonic acid, to express their activities at membrane locations. Numerous hormones, neurotransmitters, growth factors and antigens are believed to transmit their signals by activation of a variety of phospholipases to generate these messengers. The various PKC isozymes, which exhibit distinct biochemical characteristics and unique cellular and subcellular localizations, may be differentially stimulated depending on the duration and strength of these messengers. Activation of PKC has been linked to the regulation of cell surface receptors, ion channels, secretion, gene expression, and neuronal plasticity and toxicity. The mechanisms of action of PKC in the regulation of these cellular functions are not entirely clear. Further study to identify the target substrates relevant to the various cellular functions is essential to define the functional diversity of this enzyme family.  相似文献   

11.
SMS [SM (sphingomyelin) synthase] is a class of enzymes that produces SM by transferring a phosphocholine moiety on to ceramide. PC (phosphatidylcholine) is believed to be the phosphocholine donor of the reaction with consequent production of DAG (diacylglycerol), an important bioactive lipid. In the present study, by modulating SMS1 and SMS2 expression, the role of these enzymes on the elusive regulation of DAG was investigated. Because we found that modulation of SMS1 or SMS2 did not affect total levels of endogenous DAG in resting cells, whereas they produce DAG in vitro, the possibility that SMSs could modulate subcellular pools of DAG, once acute activation of the enzymes is triggered, was investigated. Stimulation of SM synthesis was induced by either treatment with short-chain ceramide analogues or by increasing endogenous ceramide at the plasma membrane, and a fluorescently labelled conventional C1 domain [from PKC (protein kinase C)] enhanced in its DAG binding activity was used to probe subcellular pools of DAG in the cell. With this approach, we found, using confocal microscopy and subcellular fractionation, that modulation of SMS1 and, to a lesser extent, SMS2 affected the formation of DAG at the Golgi apparatus. Similarly, down-regulation of SMS1 and SMS2 reduced the localization of the DAG-binding protein PKD (protein kinase D) to the Golgi. These results provide direct evidence that both enzymes are capable of regulating the formation of DAG in cells, that this pool of DAG is biologically active, and for the first time directly implicate SMS1 and SMS2 as regulators of DAG-binding proteins in the Golgi apparatus.  相似文献   

12.
Protein kinase C (PKC) is a member of a family of Ser/Thr phosphotransferases that are involved in many cellular signaling pathways. These enzymes possess two regulatory domains, C1 and C2, that are the targets of different second messengers. The purpose of this review is to describe in molecular terms the diverse mechanisms of activation of PKCs in the light of very significant advances made in this field over recent years. The role of some critical amino acid residues concerning activation of the enzymes and their location within known structures of isolated domains will be presented. For example, the recently deduced 3D structures of the C2 domains show that these domains can additionally act as PtdIns(4,5)P(2)-binding or phosphotyrosine-binding modules depending on the isoenzyme. All these capacities to play different roles in the cell wide web of signals underline the notion that we are dealing with a multifunctional family of enzymes which, after 30 years of investigation, we are just beginning to understand.  相似文献   

13.
Gallegos LL  Newton AC 《IUBMB life》2008,60(12):782-789
The lipid second messenger diacylglycerol (DAG) controls the rate, amplitude, duration, and location of protein kinase C (PKC) activity in the cell. There are three classes of PKC isozymes and, of these, the conventional and novel isozymes are acutely controlled by DAG. The kinetics of DAG production at various intracellular membranes, the intrinsic affinity of specific isoforms for DAG-containing membranes, the coordinated use of additional membrane-binding modules, the intramolecular regulation of DAG sensitivity, and the competition from other DAG-responsive proteins together result in a unique, context-dependent activation signature for each isoform. This review focuses on the spatiotemporal dynamics of PKC activation and how it is controlled by lipid second messengers.  相似文献   

14.
High intracellular 1,2,-sn-diacylglycerol (DAG) usually activates protein kinase C (PKC). In choline-deficient Fischer 344 rats, we previously showed that fatty liver was associated with elevated hepatic DAG and sustained activation of PKC. Steatosis is a sequelae of many liver toxins, and we wanted to determine whether fatty liver is always associated with accumulation of DAG with activation of PKC. Obese Zucker rats had 11-fold more triacylglycerol in their livers and 2-fold more DAG in their hepatic plasma membrane than did lean control Zucker rats. However, this increased diacylglycerol was not associated with translocation or activation of PKC in hepatic plasma membrane (activity in obese rats was 897 pmol/mg protein×min−1 vs. 780 pmol/mg protein×min−1 in lean rats). No differences in PKC isoform expression were detected between obese and lean rats. In additional studies, we found that choline deficiency in the Zucker rat did not result in activation of PKC in liver, unlike our earlier observations in the choline deficient Fischer rat. This dissociation between fatty liver, DAG accumulation and PKC activation in Zucker rats supports previous reports of abnormalities in PKC signaling in this strain of rats.  相似文献   

15.
Signal transduction in esophageal and LES circular muscle contraction   总被引:2,自引:0,他引:2  
Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to M2 muscarinic receptors activating at least three intracellular phospholipases, i.e., phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD), and the high molecular weight (85 kDa) cytosolic phospholipase A2 (cPLA2) to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic M3 receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the G(q/11) type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate (PIP2), producing inositol 1,4,5-trisphosphate (IP3) and DAG. IP3 causes release of intracellular Ca++ and formation of a Ca++-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway. Signal transduction pathways responsible for maintenance of LES tone are quite distinct from those activated during contraction in response to maximally effective doses of agonists (e.g., ACh). Resting LES tone is associated with activity of a low molecular weight (approximately 14 kDa) pancreatic-like (group 1) secreted phospholipase A2 (sPLA2) and production of arachidonic acid (AA), which is metabolized to prostaglandins and thromboxanes. These AA metabolites act on receptors linked to G-proteins to induce activation of PI- and PC-specific phospholipases, and production of second messengers. Resting LES tone is associated with submaximal PI hydrolysis resulting in submaximal levels of inositol trisphosphate (IP3-induced Ca++ release, and interaction with DAG to activate PKC. In an animal model of acute esophagitis, acid-induced inflammation alters the contractile pathway of ESO and LES. In LES circular muscle, after induction of experimental esophagitis, basal levels of PI hydrolysis are substantially reduced and intracellular Ca++ stores are functionally damaged, resulting in a reduction of resting tone. The reduction in intracellular Ca++ release causes a switch in the signal transduction pathway mediating contraction in response to ACh. In the normal LES, ACh causes release of Ca++ from intracellular stores and activation of a calmodulin-dependent pathway. After esophagitis, ACh-induced contraction depends on influx of extracellular Ca++, which is insufficient to activate calmodulin, and contraction is mediated by a PKC-dependent pathway. These changes are reproduced in normal LES cells by thapsigargin-induced depletion of Ca++ stores, suggesting that the amount of Ca++ available for release from intracellular stores defines the signal transduction pathway activated by a maximally effective dose of ACh.  相似文献   

16.
Activating the protein-tyrosine kinase of v-Src in BALB/c 3T3 cells results in rapid increases in the intracellular second messenger, diacylglycerol (DAG). v-Src-induced increases in radiolabeled DAG were most readily detected when phospholipids were prelabeled with myristic acid, which is incorporated predominantly into phosphatidylcholine. Consistent with this observation, v-Src increased the level of intracellular choline. No increase in DAG was observed when cells were prelabeled with arachidonic acid, which is incorporated predominantly into phosphatidylinositol. Inhibiting phosphatidic acid (PA) phosphatase, which hydrolyzes PA to DAG, blocked v-Src-induced DAG production and enhanced PA production, implicating a type D phospholipase. Consistent with the involvement of a type D phospholipase, v-Src increased transphosphatidylation activity, which is characteristic of type D phospholipases. Thus, v-Src-induced increases in DAG most likely result from the activation of a type D phospholipase/PA phosphatase-mediated signaling pathway.  相似文献   

17.
Diacylglycerol (DAG) signaling relies on the presence of conserved domain 1 (C1) in its target proteins. Phospholipase C-dependent generation of DAG after T cell receptor (TCR) triggering is essential for the correct immune response onset. Accordingly, two C1-containing proteins expressed in T lymphocytes, Ras guanyl nucleotide-releasing protein1 (RasGRP1) and protein kinase C (PKC), were shown to be fundamental for T-cell activation and proliferation. Although containing the same regulatory domain, they are proposed to relocate to distinct subcellular locations in response to TCR triggering. Here we studied intracellular localization of RasGRP1 and PKC C1 domains in living Jurkat T cells. The results demonstrate that, in the absence of significant primary sequence differences, the C1 domains of these proteins show specific localization within the cell and distinct responses to pharmacological stimulation and TCR triggering. These differences help explain the divergent localization and distinct functional roles of the full-length proteins, which contains them. The properties of these DAG-binding modules allow their characterization as functional markers that discriminate between DAG pools. Finally, we show that by binding to different diacylglycerol forms, overexpression of distinct C1 modules can attenuate DAG-dependent signals originating from the plasma or internal membranes. This is shown by analyzing the contribution of these two lipid pools to PLC-dependent Ras activation in response to TCR triggering.  相似文献   

18.
Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol (DAG) to phosphatidic acid. We previously identified DGK as one of nine mammalian DGK isoforms and reported on its regulation by interaction with RhoA and by translocation to the plasma membrane in response to noradrenaline. Here, we have investigated how the localization of DGK, fused to green fluorescent protein, is controlled upon activation of G protein-coupled receptors in A431 cells. Extracellular ATP, bradykinin, or thrombin induced DGK translocation from the cytoplasm to the plasma membrane within 2-6 min. This translocation, independent of DGK activity, was preceded by protein kinase C (PKC) translocation and was blocked by PKC inhibitors. Conversely, activation of PKC by 12-O-tetradecanoylphorbol-13-acetate induced DGK translocation. Membrane-permeable DAG (dioctanoylglycerol) also induced DGK translocation but in a PKC (staurosporin)-independent fashion. Mutations in the cysteine-rich domains of DGK abrogated its hormone- and DAG-induced translocation, suggesting that these domains are essential for DAG binding and DGK recruitment to the membrane. We show that DGK interacts selectively with and is phosphorylated by PKCepsilon and -eta and that peptide agonist-induced selective activation of PKCepsilon directly leads to DGK translocation. Our data are consistent with the concept that hormone-induced PKC activation regulates the intracellular localization of DGK, which may be important in the negative regulation of PKCepsilon and/or PKCeta activity.  相似文献   

19.
20.
A growing body of evidence, accumulated over the past 15 years, has highlighted that the protein kinase C family of isozymes is capable of translocating to the nucleus or is resident within the nucleus. The comprehension of protein kinase C isoform regulation within this organelle is under development. At present, it is emerging that lipid second messengers may play at least two roles in the control of nuclear protein kinase C: on one side they serve as chemical attractants, on the other they directly modulate the activity of specific isoforms. One of the best characterized lipid second messenger that could be involved in the regulation of nuclear PKC activity is DAG. The existence of two separate pools of nuclear DAG suggests that this lipid second messenger might be involved in distinct pathways that lead to different cell responses. Nuclear phosphatidylglycerol, D-3 phosphorylated inositol lipids and nuclear fatty acids are involved in a striking variety of critical biological functions which may act by specific PKC activation. The fine tuning of PKC regulation in cells subjected to proliferating or differentiating stimuli, might prove to be of great interest also for cancer therapy, given the fact that PKC-dependent signaling pathways are increasingly being seen as possible pharmacological target in some forms of neoplastic diseases. In this article, we review the current knowledge about lipid second messengers that are involved in regulating the translocation and/or the activity of different protein kinase C isoforms identified at the nuclear level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号