首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin filaments in sensory hairs of inner ear receptor cells   总被引:4,自引:11,他引:4       下载免费PDF全文
Receptor cells in the ear are excited through the bending of sensory hairs which project in a bundle from their surface. The individual stereocilia of a bundle contain filaments about 5 nm in diameter. The identity of these filaments has been investigated in the crista ampullaris of the frog and guinea pig by a technique of decoration with subfragment-1 of myosin (S-1). After demembranation with Triton X-100 and incubation with S-1, "arrowhead" formation was observed along the filaments of the stereocilia and their rootlets and also along filaments in the cuticular plate inside the receptor cell. The distance between attached S-1 was 35 nm and arrowheads pointed in towards the cell soma. It is concluded that the filaments of stereocilia are composed of actin.  相似文献   

2.
The development of middle-ear structures in the mouse was examined in nine groups of pups between 1 and 45 days of age. The area of the tympanic membrane (pars tensa and pars flaccida), the length of the lever arms of the malleus and incus, the surface area of the oval window, and the volume of the bulla all showed systematic changes during neonatal life. The area of the oval window reached maturity first and the lever arms achieved 90% of their adult size on day 11. The tympanic membrane achieved the same criterion on day 18. These data help us further to understand the processes that contribute to the functional ontogeny of the middle ear.  相似文献   

3.
4.
Temporal and spatial coordination of multiple cell fate decisions is essential for proper organogenesis. Here, we define gene interactions that transform the neurogenic epithelium of the developing inner ear into specialized mechanosensory receptors. By Cre-loxP fate mapping, we show that vestibular sensory hair cells derive from a previously neurogenic region of the inner ear. The related bHLH genes Ngn1 (Neurog1) and Math1 (Atoh1) are required, respectively, for neural and sensory epithelial development in this system. Our analysis of mouse mutants indicates that a mutual antagonism between Ngn1 and Math1 regulates the transition from neurogenesis to sensory cell production during ear development. Furthermore, we provide evidence that the transition to sensory cell production involves distinct autoregulatory behaviors of Ngn1 (negative) and Math1 (positive). We propose that Ngn1, as well as promoting neurogenesis, maintains an uncommitted progenitor cell population through Notch-mediated lateral inhibition, and Math1 irreversibly commits these progenitors to a hair-cell fate.  相似文献   

5.
In the vertebrate inner ear, the ability to detect angular head movements lies in the three semicircular canals and their sensory tissues, the cristae. The molecular mechanisms underlying the formation of the three canals are largely unknown. Malformations of this vestibular apparatus found in zebrafish and mice usually involve both canals and cristae. Although there are examples of mutants with only defective canals, few mutants have normal canals without some prior sensory tissue specification, suggesting that the sensory tissues, cristae, might induce the formation of their non-sensory components, the semicircular canals. We fate-mapped the vertical canal pouch in chicken that gives rise to the anterior and posterior canals, using a fluorescent, lipophilic dye (DiI), and identified a canal genesis zone adjacent to each prospective crista that corresponds to the Bone morphogenetic protein 2 (Bmp2)-positive domain in the canal pouch. Using retroviruses or beads to increase Fibroblast Growth Factors (FGFs) for gain-of-function and beads soaked with the FGF inhibitor SU5402 for loss-of-function experiments, we show that FGFs in the crista promote canal development by upregulating Bmp2. We postulate that FGFs in the cristae induce a canal genesis zone by inducing/upregulating Bmp2 expression. Ectopic FGF treatments convert some of the cells in the canal pouch from the prospective common crus to a canal-like fate. Thus, we provide the first molecular evidence whereby sensory organs direct the development of the associated non-sensory components, the semicircular canals, in vertebrate inner ears.  相似文献   

6.
7.
In mammals, auditory information is processed by the hair cells (HCs) located in the cochlea and then rapidly transmitted to the CNS via a specialized cluster of bipolar afferent connections known as the spiral ganglion neurons (SGNs). Although many anatomical aspects of SGNs are well described, the molecular and cellular mechanisms underlying their genesis, how they are precisely arranged along the cochlear duct, and the guidance mechanisms that promote the innervation of their hair cell targets are only now being understood. Building upon foundational studies of neurogenesis and neurotrophins, we review here new concepts and technologies that are helping to enrich our understanding of the development of the nervous system within the inner ear.  相似文献   

8.
9.
Several studies suggest fibroblast growth factor receptor 3 (FGFR3) plays a role in the development of the auditory epithelium in mammals. We undertook a study of FGFR3 in the developing and mature chicken inner ear and during regeneration of this epithelium to determine whether FGFR3 shows a similar pattern of expression in birds. FGFR3 mRNA is highly expressed in most support cells in the mature chick basilar papilla but not in vestibular organs of the chick. The gene is expressed early in the development of the basilar papilla. Gentamicin treatment sufficient to destroy hair cells in the basilar papilla causes a rapid, transient downregulation of FGFR3 mRNA in the region of damage. In the initial stages of hair cell regeneration, the support cells that reenter the mitotic cycle in the basilar papilla do not express detectable levels of FGFR3 mRNA. However, once the hair cells have regenerated in this region, the levels of FGFR3 mRNA and protein expression rapidly return to approximate those in the undamaged epithelium. These results indicate that FGFR3 expression changes after drug-induced hair cell damage to the basilar papilla in an opposite way to that found in the mammalian cochlea and may be involved in regulating the proliferation of support cells.  相似文献   

10.
In mammals, six separate sensory regions in the inner ear are essential for hearing and balance function. Each sensory region is made up of hair cells, which are the sensory cells, and their associated supporting cells, both arising from a common progenitor. Little is known about the molecular mechanisms that govern the development of these sensory organs. Notch signaling plays a pivotal role in the differentiation of hair cells and supporting cells by mediating lateral inhibition via the ligands Delta-like 1 and Jagged (JAG) 2. However, another Notch ligand, JAG1, is expressed early in the sensory patches prior to cell differentiation, indicating that there may be an earlier role for Notch signaling in sensory development in the ear. Here, using conditional gene targeting, we show that the Jag1 gene is required for the normal development of all six sensory organs within the inner ear. Cristae are completely lacking in Jag1-conditional knockout (cko) mutant inner ears, whereas the cochlea and utricle show partial sensory development. The saccular macula is present but malformed. Using SOX2 and p27kip1 as molecular markers of the prosensory domain, we show that JAG1 is initially expressed in all the prosensory regions of the ear, but becomes down-regulated in the nascent organ of Corti by embryonic day 14.5, when the cells exit the cell cycle and differentiate. We also show that both SOX2 and p27kip1 are down-regulated in Jag1-cko inner ears. Taken together, these data demonstrate that JAG1 is expressed early in the prosensory domains of both the cochlear and vestibular regions, and is required to maintain the normal expression levels of both SOX2 and p27kip1. These data demonstrate that JAG1-mediated Notch signaling is essential during early development for establishing the prosensory regions of the inner ear.  相似文献   

11.
12.
The sensory epithelia of the inner ear contain mechanosensory hair cells and non-sensory supporting cells. Both classes of cell are heterogeneous, with phenotypes varying both between and within epithelia. The specification of individual cells as distinct types of hair cell or supporting cell is regulated through intra- and extracellular signalling pathways that have been poorly understood. However, new methodologies have resulted in significant steps forward in our understanding of the molecular pathways that direct cells towards these cell fates.  相似文献   

13.
By means of scanning electron microscopy method, sensory formations of the membranous labyrinth has been studied in the frog (Rana temporaria). The form of sensory fields and morphological peculiarities of the hair cells are described. For the saccular macula, amphibian and basilar papillae, the number of the hair cells is calculated, orientation of the hair cell poles is demonstrated.  相似文献   

14.
15.
Immunological techniques have been used to generate both polyclonal and monoclonal antibodies specific for the apical ends of sensory hair cells in the avian inner ear. The hair cell antigen recognized by these antibodies is soluble in nonionic detergent, behaves on sucrose gradients primarily as a 16S particle, and, after immunoprecipitation, migrates as a polypeptide with a relative molecular mass of 275 kD on 5% SDS gels under reducing conditions. The antigen can be detected with scanning immunoelectron microscopy on the apical surface of the cell and on the stereocilia bundle but not on the kinocilium. Double label studies indicate that the entire stereocilia bundle is stained in the lagena macula (a vestibular organ), whereas in the basilar papilla (an auditory organ) only the proximal region of the stereocilia bundle nearest to the apical surface is stained. The monoclonal anti-hair cell antibodies do not stain brain, tongue, lung, liver, heart, crop, gizzard, small intestine, skeletal muscle, feather, skin, or eye tissues but do specifically stain renal corpuscles in the kidney. Experiments using organotypic cultures of the embryonic lagena macula indicate that the antibodies cause a significant increase in the steady-state stiffness of the stereocilia bundle but do not inhibit mechanotransduction. The antibodies should provide a suitable marker and/or tool for the purification of the apical sensory membrane of the hair cell.  相似文献   

16.
Reduction of the wild-type activity of the gene Hairless (H) results in two major phenotypic effects on the mechanosensory bristles of adult Drosophila. Bristles are either 'lost' (i.e. the shaft and socket fail to appear) or they exhibit a 'double socket' phenotype, in which the shaft is apparently transformed into a second socket. Analysis of the phenotypes conferred by a series of H mutant genotypes demonstrates (1) that different sensilla exhibit different patterns of response to decreasing levels of H+ function, and (2) that the 'bristle loss' phenotype results from greater loss of H+ function than the 'double socket' phenotype. The systematic study of H allelic combinations enabled us to identify genotypes that reliably produce specific mutant defects in particular positions on the bodies of adult flies. This permitted us to investigate the cellular development of sensilla in these same positions in larvae and pupae and thereby establish the developmental basis for the mutant phenotypes. We have found that H is required for at least two steps of adult sensillum development. In positions where 'double socket' microchaetes appear on the notum of H mutant flies, sensillum precursor cells are present in the developing pupa and divide normally, but their progeny adopt an aberrant spatial arrangement and fail to differentiate correctly. In regions of the notum exhibiting 'bristle loss' in adult H mutants, we were unable at the appropriate stages of development to detect sensillum-specific cell types, the precursor cell divisions that generate them, or the primary precursor cells themselves. Thus, the H 'bristle loss' phenotype appears to reflect a very early defect in sensillum development, namely the failure to specify and/or execute the sensory organ precursor cell fate. This finding indicates that H is one of a small number of identified genes for which the loss-of-function phenotype is the failure of sensillum precursor cell development.  相似文献   

17.
18.
19.
During embryonic development of the inner ear, the sensory primordium that gives rise to the organ of Corti from within the cochlear epithelium is patterned into a stereotyped array of inner and outer sensory hair cells separated from each other by non-sensory supporting cells. Math1, a close homolog of the Drosophila proneural gene atonal, has been found to be both necessary and sufficient for the production of hair cells in the mouse inner ear. Our results indicate that Math1 is not required to establish the postmitotic sensory primordium from which the cells of the organ of Corti arise, but instead is limited to a role in the selection and/or differentiation of sensory hair cells from within the established primordium. This is based on the observation that Math1 is only expressed after the appearance of a zone of non-proliferating cells that delineates the sensory primordium within the cochlear anlage. The expression of Math1 is limited to a subpopulation of cells within the sensory primordium that appear to differentiate exclusively into hair cells as the sensory epithelium matures and elongates through a process that probably involves radial intercalation of cells. Furthermore, mutation of Math1 does not affect the establishment of this postmitotic sensory primordium, even though the subsequent generation of hair cells is blocked in these mutants. Finally, in Math1 mutant embryos, a subpopulation of the cells within the sensory epithelium undergo apoptosis in a temporal gradient similar to the basal-to-apical gradient of hair cell differentiation that occurs in the cochlea of wild-type animals.  相似文献   

20.
Ciliary motility is necessary for many developmental and physiological processes in animals. In zebrafish, motile cilia are thought to be required for the deposition of otoliths, which comprise crystals of protein and calcium carbonate, on hair cells of the inner ear. The identity of the motile cilia and their role in otolith biogenesis, however, remain controversial. Here, we show that the ear vesicle differentiates numerous motile cilia, the spatial distribution of which changes as a function of the expression pattern of the ciliogenic gene foxj1b. By contrast, the hair cells develop immotile kinocilia that serve as static tethers for otolith crystallization. In ears devoid of all cilia, otoliths can form but they are of irregular shapes and sizes and appear to attach instead to the hair cell apical membranes. Moreover, overproduction of motile cilia also disrupts otolith deposition through sustained agitation of the precursor particles. Therefore, the correct spatial and temporal distribution of the motile cilia is crucial for proper otolith formation. Our findings support the view that the hair cells express a binding factor for the otolith precursors, while the motile cilia ensure that the precursors do not sediment prematurely and are efficiently directed towards the hair cells. We also provide evidence that the kinocilia are modified motile cilia that depend on Foxj1b for their differentiation. We propose that in hair cells, a Foxj1b-dependent motile ciliogenic program is altered by the proneural Atoh proteins to promote the differentiation of immotile kinocilia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号