首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distribution patterns of Gomphus pulchellus larvae in different sediments with different density of prey organisms were studied in the field in a small gravel pit lake in the south of Germany. Larval burrowing behaviour at different temperatures as well as food preference, consumption rates and activity were studied in laboratory experiments. In the study lake G. pulchellus larvae lived exclusively in places where macrophytes were present and in fine sediments (mean grain size <3 mm) with detritus cover. There was a significant positive correlation between larval density and density of food organisms suggesting that abundance of food is one of the determinants of larval distribution. In late autumn larvae migrated to deeper places probably to survive the winter. Low temperatures simulated in laboratory experiments did not induce larvae to burrow deeper. Larvae were always found in a sediment depth of 0.59–0.74 cm. Experiments with mixed prey showed that G. pulchellus larvae preferred tubificid worms and chironomid larvae over gammarids and ephemerid larvae. However, chironomid larvae which stayed in their tubes had a higher survival rate than those outside of tubes. Single-prey experiments showed that G. pulchellus larvae can prey not only on benthic species but also on Daphnia from the open water. Functional-response experiments showed that one G. pulchellus larva consumes a maximum of 2 to 3 tubificid worms or chironomid larvae per day, which corresponds to a maximum biomass (freshweight) of 5 to 30 mg per day. Video recordings of activity showed that G. pulchellus larvae cover long distances of up to 52 m per night on the substrate surface and that activity on the substrate surface started after midnight and ceased before sunrise. Consumption of Zooplankton prey and high activity above the substrate is interpreted as an adaptation of G. pulchellus larvae to the life in still water habitats.  相似文献   

2.
Frouz  Jan  Lobinske  Richard J.  Ali  Arshad 《Hydrobiologia》2004,518(1-3):169-177
Two opposite distribution patterns of larval Glyptotendipes paripes in relation to organic carbon content in sediments of central Florida lakes were discovered. In a majority of examined lakes, G. paripes larvae were most abundant in sand sediment and their density rapidly declined with increased carbon content (type 1 lakes); however, in some cases the opposite was true (type 2 lakes). To elucidate this anomaly, field-collected organic sediments from types 1 and 2 lakes and sand sediment were studied for G. paripes development in the laboratory. Type 1 organic sediment consisted predominantly of fine particles (<0.25 mm diameter) with low dissolved oxygen levels, whereas type 2 organic sediments consisted primarily of chironomid large faecal pellet aggregates (>0.25 mm diameter), with significantly higher levels of dissolved oxygen concentrations that were similar to sand sediment. Type 2 organic sediment and sand sediment were conducive to higher survival of G. paripes larvae than fine organic sediment. The larvae in type 2 organic sediment produced longer tubes than in other sediment types. This observation indicates that accumulation of chironomid faecal pellets in lake sediments may change physical properties, such as dissolved oxygen level and consequently alter conditions for survival of chironomid larvae and possibly other benthic fauna.  相似文献   

3.
Field surveys and laboratory studies were used to determine the role of substrata in habitat selection by young-of-the year winter flounder. A synoptic field survey of winter flounder and sediments in the Navesink River-Sandy Hook Bay estuarine system in New Jersey demonstrated that winter flounder distribution was related to sediment grain size. Analysis using a generalized additive model indicated that the probability of capturing 10-49 mm SL winter flounder was high on sediments with a mean grain diameter of /=40 mm SL) preferred coarse-grained sediments. Burying ability increased with size and all flounders avoided sediments that prevented burial. Subsequent laboratory experiments revealed that the presence of live prey (Mya arenaria) can over-ride sediment choice by winter flounder (50-68 mm SL) indicating the complexity of interrelated factors in habitat choice.  相似文献   

4.
Rae  John G. 《Hydrobiologia》2004,524(1):115-124
The colonization patterns of larval chironomid midges were studied on clean sieved sediments (range 0.25-4.0 mm; pure and mixed) placed in a third order stream in NW Pennsylvania, USA. Chironomid abundance and species richness were significantly different among four sites for homogeneous and mixed sediments. Species richness increased with sediment particle size. Fourteen of the 18 most common species had significant substrate preferences. The interpretation of two cluster analyses of sediment samples indicated two assemblages of chironomid species, each of which appeared to correlate with particular sediments, indicating some assemblage level sediment preference. Sediment size, but not heterogeneity, appears to be a strong factor in the species richness pattern of the community, and in the microhabitat choices of individual chironomid species, in this sandy environment.  相似文献   

5.
From earlier research it has been suggested that chironomid larvae may significantly affect the physical properties of cohesive sediments, leading to chemical alteration in lake ecosystems. The present study was aimed to evaluate the effect of Tanytarsini larvae on the physical properties of cohesive sediments, both in controlled environments and in natural environments. For this the sediment surface was examined by low temperature scanning electron microscopy (LTSEM) and direct measurement of the shear strength. The larvae are able to modify the surface sediment significantly, e.g., by secretion of silk, which forms a matrix at the sediment surface in the vicinity of the larval tubes. The shear strength increased with greater sediment depth in all the experimental treatments, except where the densities were high. Considerably higher shear strength was observed in the natural sediment than in the experimental set up. A very significant density-dependent effect was observed within the top 1-cm by tube building Tanytarsini larvae. The relationship between larval densities and shear strength was not significant for 2 deeper sections (1–3 cm). The tube length was significantly greater in experimental containers with the low density (4960 ind. m–2) than in containers with high larval densities (19840 and 39680 ind. m–2).  相似文献   

6.
1. We investigated the effects of a flood on the fauna and physical habitat of the hyporheic zone of the Kye Burn, a fourth order gravel‐bed stream in New Zealand. 2. Freeze core hyporheic samples (to 50 cm depth) and benthic samples (to 10 cm) were taken, along with measurements of vertical hydrological gradient, before, 2 days after and 1 month after the flood (estimated return period: 1.5 years, estimated Qmax = 10.4 m3 s?1). 3. The composition of the hyporheos differed over the three sampling occasions with fewer taxa collected immediately postflood than preflood. The equitability of the community was higher on both postflood occasions, consistent with the reduced densities of two abundant taxa (Leptophlebiidae and Copepoda). 4. Total invertebrate abundance was lower on the postflood occasions than preflood in both benthic (0–10 cm) and hyporheic (10–50 cm) sediments. Several taxa, including asellotan isopods and amphipods, recovered within 1 month of the event. Hyporheic densities of larval Hydora and nematodes did not differ among the three sampling occasions, but the water mite Pseudotryssaturus was more abundant 1 month after the flood than preflood. There was no evidence of vertical movements (to 50 cm) by any taxa in response to the flood. 5. The proportion of fine sediments (<1 mm) in the subsurface sediments (10–50 cm) increased over the three sampling occasions and median particle size declined, but sediment porosity did not change. More particulate organic matter was found in the sediments after the flood. 6. Our study provides little evidence that the hyporheic zone (to 50 cm) acted as a significant refuge during the flood event, although movements to or recolonisation from sediments deeper than 50 cm could explain the recovery of many crustacean and mite taxa within 1 month.  相似文献   

7.
SUMMARY. 1. The overlying water of intact sediment cores was constantly stirred with an impeller at a rate sufficient to mix turbulently the water column and maintain the diffusive boundary layer at a determined thickness. The system allowed standardization of water circulation in laboratory sediment core experiments.
2. Both oxygen concentration and oxygen penetration depth in the sediments decreased, the former by 70% and the latter from 4.2 mm to 2.0 mm, when the overlying water was not stirred for 24 h, as measured with oxygen microelectrodes in a lake sediment core.
3. Oxygen profiles measured in sediment cores in the laboratory were similar to those measured in situ when the overlying water was stirred with an impeller at such a rate that a similar thickness of the diffusive boundary layer at the sediment-water interface developed in the laboratory as that in situ.
4. Sediment oxygen consumption was calculated from: (1) measured oxygen profiles in the diffusive boundary layer and the molecular diffusion coefficient for oxygen in water; (2) the measured oxygen decrease in the top of the sediments and the estimated diffusion coefficient in the sediment; and (3) by oxygen differences in the overlying water after incubation of sediment cores.  相似文献   

8.
We have examined the effects of sediment grain size and depth on the abundance and activity of aerobic bacteria at two coastal plain sites in Virginia. Samples were collected at centimeter intervals as well as meter intervals because fine‐scale sampling can be essential to assess microbial variability. At the Oyster site, grain size varied from 0.12 to 0.25 mm below 1.5 m depth and did not correlate with either bacterial abundance or activity. Perhaps due to the fairly uniform grain size at this site, variations in bacterial numbers were less than fivefold between replicate samples of 0,1 to 100 g and generally less than 15‐fold among closely spaced intervals (~5 cm). At the Abbott Pit site, grain size was about threefold greater (0.50 ± 0.17mm) in an interval of 4.35 to 5.0m below land surface than grain size in the surrounding sediments. In the same interval, bacterial abundance increased by 11‐fold and activity increased by 217‐fold relative to the surrounding sediments. Overall, grain size correlated significantly with bacterial abundance and activity below the soil zone at the Abbott Pit site. This suggests that changes in grain size, even at the centimeter scale, could have a predominant effect on microbial variability in sandy aquifers of the coastal plain. Besides grain size, depth correlated significantly with total organic carbon and bacterial abundance and activity at both sites, suggesting that depth is also an important factor controlling microbial variability in the subsurface environments.  相似文献   

9.
Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by pyrosequencing 16S rRNA V4‐region gene fragments obtained by PCR amplification of community genomic DNA with bacterial‐ or archaeal‐specific primers. Duplicate LCS sediment cores collected during hypoxia had higher concentrations of Fe(II), and dissolved inorganic carbon, phosphate, and ammonium than cores collected when overlying water oxygen concentrations were normal. Pyrosequencing yielded 158 686 bacterial and 225 591 archaeal sequences from 20 sediment samples, representing five 2‐cm depth intervals in the duplicate cores. Bacterial communities grouped by sampling date and sediment depth in a neighbor‐joining analysis using Chao–Jaccard shared species values. Redundancy analysis indicated that variance in bacterial communities was mainly associated with differences in sediment chemistry between oxic and hypoxic water column conditions. Gammaproteobacteria (26.5%) were most prominent among bacterial sequences, followed by Firmicutes (9.6%), and Alphaproteobacteria (5.6%). Crenarchaeotal, thaumarchaeotal, and euryarchaeotal lineages accounted for 57%, 27%, and 16% of archaeal sequences, respectively. In Thaumarchaeota Marine Group I, sequences were 96–99% identical to the Nitrosopumilus maritimus SCM1 sequence, were highest in surficial sediments, and accounted for 31% of archaeal sequences when waters were normoxic vs. 13% of archaeal sequences when waters were hypoxic. Redundancy analysis showed Nitrosopumilus‐related sequence abundance was correlated with high solid‐phase Fe(III) concentrations, whereas most of the remaining archaeal clusters were not. In contrast, crenarchaeotal sequences were from phylogenetically diverse lineages, differed little in relative abundance between sampling times, and increased to high relative abundance with sediment depth. These results provide further evidence that marine sediment microbial community composition can be structured according to sediment chemistry and suggest the expansion of hypoxia in coastal waters may alter sediment microbial communities involved in carbon and nitrogen cycling.  相似文献   

10.
A flood event in a river will redistribute the bed sediments and may bury benthic insect larvae. To test the responses of case-building caddis larvae under such circumstances, we buried fourth instar larvae of Potamophylax cingulatus (Limnephilidae) in sediment of various grain size diameters (<1, 1–4, 4–10, >10 mm) to a depth of 1 or 2 cm. Depth of burial significantly affected time taken to emerge, individuals buried to 2 cm requiring longer to emerge, particularly if buried in fine (<1 mm) or coarse (>10 mm) sediment. Two thirds of those buried 2 cm deep in fine sediment abandoned their cases before emerging, whereas very few of those buried in coarser sediments and none buried to 1 cm depth emerged without a case. Burial in fine sediment is detrimental to P. cingulatus individuals, to the extent that they will abandon their cases, increasing the risk of predation, in order to facilitate escape. The case mass probably acts as a physical impediment to movement in fine matter, particularly if the animals experience respiratory stress. In coarse sediment, weight of sediment particles may slow down emergence, but not to the extent that individuals resort to case abandonment.  相似文献   

11.
Lower Miocene cross-stratified sands of the Gering and Monroe Creek Formations exposed on Scotts Bluff National Monument in western Nebraska, U.S.A., were deposited by migrating sand bars in a braided river system similar to the modern Platte River in eastern Nebraska and, like the Platte, contain local lenses of parallel stratified sediment that accumulated in ponded areas of abandoned channels. During times of low discharge, broad areas of river bar sands and abandoned channel sediments were subaerially exposed on the Miocene river plain. These sediments, like those exposed in the Platte River today, were subjected to burrowing by insects and other animals.Trace fossils in Lower Miocene braided river deposits are: vertical shelter burrows, horizontal deposit-feeding burrows, bioturbated layers, and vertical passageways between bioturbated layers. The burrows are cylindrical to sub-cylindrical in cross-section, internally meniscate or massive, generally non-branching, and smooth walled. Shelter burrows are similar in shape and size to recent burrows dug by beetles in river sediment for protection from day-time temperatures, to pass the night, and to hibernate. The shelter burrows, deposit-feeding burrows, and vertical passageways in the Lower Miocene sediments occur in four distinct “populations” with modal diameters of 1–2, 3–4, 7–8, and 10–12 mm. The occurrence of both vertical and horizontal burrows in all four “populations” suggests that they could have been made by the same insect. “Populations” with modal diameters of 1–2, 3–4, and 7–8 mm also occur in modern Platte River sediment and are made by tiger-beetle larvae (3–4 mm) and heterocerid (1–2 mm) beetles. Miocene shelter burrows, deposit-feeding burrows, bioturbated layers, and vertical passageways, therefore, could have been formed by different types of beetles, and/or larval instars and adults of the same beetle species.  相似文献   

12.
The population structures of Terebratulina septentrionalis (Couthouy) from exposed upper rock surface and semi-cryptic rock wall habitats at 33 m depth in the Gulf of Maine differ. Over a 3-yr period, population densities were consistently higher in rock wall habitats. Although both populations were dominated by juveniles (1–4 mm shell length), size-frequency distributions constructed from upper rock surface and rock wall populations were significantly different, as a result of a greater frequency of large brachiopods (> 20 mm shell length) in rock wall populations. Prominent modes occurred at 14–15 mm shell length in upper surface populations and at 19–20 mm length in rock wall populations. Recruitment was higher in rock wall habitats where ambient light intensities were significantly lower than on upper rock surfaces. Differences in recruitment are either the result of larval selection for shaded rock walls or differential juvenile mortality between habitats. The larvae of Terebratulina settle on a diverse array of substrata. These include bedrock, sandy polychaete tubes and algae in upper surface habitats and bedrock, calcareous polychaete tubes, and ascidians in rock wall habitats. Individuals attached to polychaete tubes and algae in upper surface habitats do not attain large body size (> 13 mm shell length). It is suggested that these differences in population structure reflect the greater intensity of disturbance in upper surface habitats. For example, the cod, Gadus morhua (Linnaeus), ingests brachiopods attached to algae and polychaete tubes in this habitat. Gastropod predation affects brachiopods in upper surface habitats but not in rock wall habitats. Predation by gastropods and asteroids is not size-specific. These results are consistent with the hypothesis that predation contributed to the decline in the abundance and diversity of articulate brachiopods since the Mesozoic, and suggest that the restriction of recent populations to semi-cryptic rock wall and crevice habitats is, in part, controlled by disturbance.  相似文献   

13.
Microsensors, including a recently developed NO3(-) biosensor, were applied to measure O(2) and NO3(-) profiles in marine sediments from the upwelling area off central Chile and to investigate the influence of Thioploca spp. on the sedimentary nitrogen metabolism. The studies were performed in undisturbed sediment cores incubated in a small laboratory flume to simulate the environmental conditions of low O(2), high NO3(-), and bottom water current. On addition of NO3(-) and NO2(-), Thioploca spp. exhibited positive chemotaxis and stretched out of the sediment into the flume water. In a core densely populated with Thioploca, the penetration depth of NO3(-) was only 0.5 mm and a sharp maximum of NO3(-) uptake was observed 0.5 mm above the sediment surface. In sediments with only few Thioploca spp., NO3(-) was detectable down to a depth of 2 mm and the maximum consumption rates were observed within the sediment. No chemotaxis toward nitrous oxide (N2O) was observed, which is consistent with the observation that Thioploca does not denitrify but reduces intracellular NO3(-) to NH(4)(+). Measurements of the intracellular NO3(-) and S(0) pools in Thioploca filaments from various depths in the sediment gave insights into possible differences in the migration behavior between the different species. Living filaments containing significant amounts of intracellular NO3(-) were found to a depth of at least 13 cm, providing final proof for the vertical shuttling of Thioploca spp. and nitrate transport into the sediment.  相似文献   

14.
Sediment-reworking macrofauna can stimulate nitrification by increasing the O2 penetration into sediments or it can reduce nitrification by grazing on nitrifying bacteria. We investigated the influence of Chironomus riparius larvae (Insecta: Diptera) on the in situ activity, abundance, and distribution of NH4+-oxidizing (AOB) and NO2-oxidizing bacteria (NOB) in two freshwater sediments with microsensors and fluorescence in situ hybridization. In organic-poor sediment, nitrification activity was reduced by the presence of C. riparius larvae, whereas no such effect was detected in organic-rich sediment. We explain this difference with the variable larval burrowing and grazing behavior in the two sediment types: In organic-poor sediment larval activities were intense and evenly distributed across the whole sediment surface, whereas in organic-rich sediment larval activities were locally restricted to the microenvironment of animal burrows. Surprisingly, the animals did not cause any significant change of the abundance of AOB and NOB. This implies that the observed reduction of nitrification activity was not density-regulated, but rather was due to the lowered metabolic activity of the nitrifiers. Partial digestion and redeposition of particle-associated bacteria by C. riparius larvae are believed to have caused this loss of metabolic activity.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

15.
【目的】湖泊沉积物中存储着大量独特的微生物,这些微生物在湖泊生态系统生物地球化学循环中扮演着非常重要的角色。然而,很少有研究报道微生物群落在湖泊沉积物中的垂直分布。本文比较研究青藏高原淡水湖普莫雍错和盐水湖阿翁错沉积物在不同深度下细菌的丰度和群落结构。【方法】利用定量PCR(q PCR)和变性梯度凝胶电泳(DGGE)技术分别测定细菌群落的丰度与群落结构。【结果】定量PCR结果显示,湖泊沉积物中细菌丰度均随深度增加而降低,盐水湖阿翁错和淡水湖普莫雍错的细菌丰度分别从1011数量级降到108数量级,从1012数量级降到1010数量级。在相对应的沉积物层,淡水湖沉积物的细菌丰度比盐水湖高1-2个数量级。变性梯度凝胶电泳(DGGE)指纹图谱的分析表明,淡水湖沉积物细菌群落的DGGE条带数(丰富度)显著高于盐水湖(P=0.014);淡水与盐水湖泊沉积物细菌群落结构明显不同,同时在同一湖泊沉积物中上层(0-6 cm)和下层(7-20 cm)细菌群落结构也呈明显分异。系统发育分析表明,盐水湖阿翁错沉积物特有菌门为Gamma-变形菌、拟杆菌门、蓝细菌和栖热菌门,而淡水湖普莫雍错沉积物中特有菌门为Delta-和Beta-变形菌、酸杆菌和绿弯菌门。【结论】青藏高原淡水与盐水湖泊沉积物细菌丰度与群落结构具有明显的差异;同时,细菌群落结构在沉积物的不同深度也表现出差异。这些结果可为进一步阐明青藏高原湖泊生态系统中微生物对气候环境变化的响应提供科学依据。  相似文献   

16.
The abundances and activities of aerobic methane-oxidizing bacteria (MOB) were compared in depth profiles of littoral and profundal sediments of Lake Constance, Germany. Abundances were determined by quantitative PCR (qPCR) targeting the pmoA gene and by fluorescence in situ hybridization (FISH), and data were compared to methane oxidation rates calculated from high-resolution concentration profiles. qPCR using type I MOB-specific pmoA primers indicated that type I MOB represented a major proportion in both sediments at all depths. FISH indicated that in both sediments, type I MOB outnumbered type II MOB at least fourfold. Results obtained with both techniques indicated that in the littoral sediment, the highest numbers of methanotrophs were found at a depth of 2 to 3 cm, corresponding to the zone of highest methane oxidation activity, although no oxygen could be detected in this zone. In the profundal sediment, highest methane oxidation activities were found at a depth of 1 to 2 cm, while MOB abundance decreased gradually with sediment depth. In both sediments, MOB were also present at high numbers in deeper sediment layers where no methane oxidation activity could be observed.  相似文献   

17.
Smirnov AV 《Protist》2002,153(3):239-250
The sandy sediments of Niv? Bay (Baltic Sea, The Sound, Denmark) are often covered with the mats of sulphur bacteria and are temporarily anoxic. The vertical distribution and abundance of naked amoebae species in three sediment cores from this bay were studied. Amoebae were most abundant and diverse in the upper 1 cm of sediment, and their number and diversity decreased with increasing depth into the sediment. Amoebae were recovered from both upper oxygenated and deep anoxic layers of sediments. The species composition and abundance of amoebae was very heterogeneous, even at spatial scales of several centimeters, suggesting the existence of microhabitats selectively occupied by particular species. All species found were recorded from aerobic cultures and some of these amoebae occur in both the aerobic and anaerobic layers of the sediment. Minimal possible number of amoebae in the sediments, estimated for the first time as areal abundance integrated for depth was: core 1 -597 cm(-2); core 2 -1,110 cm(-2); core 3 -1,430 cm(-2). These abundances are probably best regarded as "potential" abundances of amoebae hidden in the sediments, as the question of the ratio between active and resting amoebae remains open.  相似文献   

18.
Despite significant implications of viral activity in sediment ecosystems, there are limited data describing how sediment viral assemblages respond to broader ecosystem changes. To document this, the spatial and temporal dynamics of viral and bacterial abundance (BA) and changes in the morphological distribution of viruses were examined within three salinity regions over 2 years. Viral abundances (VA) ranged from 0.2 to 17 × 10(10) viruses mL(-1) sediment while direct bacterial counts ranged from 3.8 to 37 × 10(8) cells mL(-1) sediment. Peaks and valleys in the abundance of extracted viruses and bacteria from surface sediments occurred simultaneously, with lows in February 2004 and highs in April 2003. Across all samples, viral and BA were positively correlated (P < 0.001). Vertical profiles showed a decrease in viral and BA with depth in sediments. Based on transmission electron microscopy results, viruses with diminutive capsids (20-50 nm) and from the Myoviridae and Podoviridae viral family types were dominant within surface sediments. The most morphologically diverse viral assemblages occurred in autumn samples from the sandy, polyhaline station and spring samples from the mesohaline station. Seasonal changes showed an average 72% decrease in VA from spring to winter. These observations support the view that viriobenthos assemblages are responsive to seasonal environmental changes and that viral processes have significant implications for the biogeochemical processes mediated by bacterial communities within Bay sediments.  相似文献   

19.
  • 1 The larval chironomid community of the sediment surface and the hyporheic inters titial was investigated in two longitudinal transects of an alpine gravel stream between September 1984 and August 1985. Eighty larval species and species groups were identified, most of which belonged to the subfamily Orthocladiinae. Of all larval individuals 51.1% inhabited the first 10cm of the bed sediments, and 93.2% occurred between the surface and 40cm depth.
  • 2 The spatial species turnover showed marked variations between horizontally adjacent sampling sites in each of the four sediment depth layers. In both transects the species composition showed a significantly lower turnover in the upper 10cm of the bed sediments than in the deeper layers.
  • 3 Spatial community stability showed an oscillating pattern between all sampling sites due to density shifts of larvae between depth layers. Temporal differences in resilience (local stability) were significantly and positively related to changes in the cumulative discharge pattern in the gravel brook, thus indicating the apparent ability of the community to recover quickly following disturbances.
  • 4 The five abundant species, Corynoneura lobata, Synorthocladius semivirens, Tvetenia calvescens, Micropsectra atrofasciata and Rheotanytarsus nigricauda, exhibited significant differences in their sediment depth distribution, with density maxima shifting between depth layers. Spatial autocorrelations suggest that these larvae form patches between neighbouring sampling sites with varying sizes and inter-patch distances in each of four sediment layers. A simulation test, in which individuals of each species were randomly permuted between microhabitats of each depth layer separately, indicated that the patches might have arisen by chance.
  • 5 To evaluate the significance of observed spatial resource overlap values amongst these five chironomid species, neutral models were developed based on 300 randomizations of each possible species pair-wise association of individuals and patches of species. The spatial organization of a larval chironomid assemblage in the stream Oberer Seebach seemed to be governed by coexistence due to random patch formation and dispersal patterns within the interstitial habitats, which reduce the probability of strong competitive interactions.
  相似文献   

20.
This study used microelectrodes to record pH profiles in fresh shelf sea sediment cores collected across a range of different sediment types within the Celtic Sea. Spatial and temporal variability was captured during repeated measurements in 2014 and 2015. Concurrently recorded oxygen microelectrode profiles and other sedimentary parameters provide a detailed context for interpretation of the pH data. Clear differences in profiles were observed between sediment type, location and season. Notably, very steep pH gradients exist within the surface sediments (10–20 mm), where decreases greater than 0.5 pH units were observed. Steep gradients were particularly apparent in fine cohesive sediments, less so in permeable sandier matrices. We hypothesise that the gradients are likely caused by aerobic organic matter respiration close to the sediment–water interface or oxidation of reduced species at the base of the oxic zone (NH4 +, Mn2+, Fe2+, S?). Statistical analysis suggests the variability in the depth of the pH minima is controlled spatially by the oxygen penetration depth, and seasonally by the input and remineralisation of deposited organic phytodetritus. Below the pH minima the observed pH remained consistently low to maximum electrode penetration (ca. 60 mm), indicating an absence of sub-oxic processes generating H+ or balanced removal processes within this layer. Thus, a climatology of sediment surface porewater pH is provided against which to examine biogeochemical processes. This enhances our understanding of benthic pH processes, particularly in the context of human impacts, seabed integrity, and future climate changes, providing vital information for modelling benthic response under future climate scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号