首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J L Johnson  G D Reinhart 《Biochemistry》1992,31(46):11510-11518
A thermodynamic linked-function analysis is presented of the interactions of MgATP and fructose 6-phosphate (Fru-6-P) with phosphofructokinase (PFK) from Escherichia coli in the absence of allosteric effectors. MgATP and Fru-6-P are shown to bind in random fashion by product inhibition of the back-reaction as well as by the kinetically competent binding of each ligand individually as monitored by the consequent changes in the intrinsic fluorescence of E. coli PFK. When Fru-6-P is saturating, the dissociation of MgATP is sufficiently slow that it cannot achieve a binding equilibrium in the steady state, causing the observed Km (49 microM) to significantly exceed the Kd (1.7 microM) deduced from a thermodynamic linkage analysis. The following features distinguish the interactions of MgATP and Fru-6-P with E. coli PFK: MgATP and Fru-6-P antagonize each other's binding to the enzyme in a saturable manner with an overall apparent coupling free energy equal to +2.5 kcal/mol at 25 degrees C; MgATP induces positive cooperativity in the Fru-6-P binding profile, with the Hill coefficient calculated from the Fru-6-P binding curves reaching a maximum of 3.6 when MgATP is saturating; and MgATP exhibits substrate inhibition at low concentrations of Fru-6-P. Simulations based upon the rate equation pertaining to a two-active-site, two-substrate dimer indicate that these features can all result from two independent couplings: an antagonistic MgATP-Fru-6-P coupling extending at least in part between active sites and a MgATP-induced Fru-6-P-Fru-6-P coupling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Grapefruit juice sac ATP-PFK was studied kinetically for its substrates ATP and Fru-6-P at pH = 7.5. The Km for ATP is equal to 39.8 +/- 4.6 microM. ATP becomes inhibitory at concentrations above 80 microM. The Km for ATP is not affected by the addition of citrate (10 mM). For Fru-6-P, the saturation curve is sigmoidal, with an S0.5 equal to 0.17 +/- 0.03 mM, in the presence of Mg++ (2.5 mM) and ATP (1 mM). ATP-PFK shows a negative cooperativity at lower concentrations of Fru-6-P (h = 0.5), while higher concentrations of the substrate induce a positive cooperation (h = 1.5). The presence of citrate affects the S0.5 affinity value, but not the Vmax. The presence of citrate (10 mM) removes the cooperative effect at higher concentrations of the substrate, as h = 1.0. A theoretical Ki for citrate was calculated and equals 1.30 mM.  相似文献   

3.
1. Phosphofructokinase (PFK) was purified from bovine parotid gland to 750-fold with the specific activity of 67.5 units/mg protein by Cibacron Blue F3GA affinity chromatography, and TSK DEAE-5PW ion-exchange and TSK G4000SW size exclusion chromatographies on HPLC. 2. On gel-filtration, molecular weight of the native PFK was estimated to 400,000. 3. PFK was a heterotetramer composed of three kinds of subunit with molecular weights of 92,000 (C-type), 88,000 (M-type) and 86,000 (L-type), by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Densitometrically, relative amounts of C-, M- and L-type subunit were 1:1:2. 4. Under the physiological conditions of fructose 6-phosphate (Fru-6-P) and ATP concentrations and pH, PFK activity was suppressed and hardly detectable. 5. Fru-6-P relieved PFK from the ATP inhibition. 6. Fructose 2,6-bisphosphate (Fru-2,6-P2) and AMP activated PFK with a reduction of S0.5 for Fru-6-P and subunit cooperativity. Fru-2,6-P2 was more effective than AMP.  相似文献   

4.
The ability for various ligands to modulate the binding of fructose 1,6-bisphosphate (Fru-1,6-P2) with purified rat liver pyruvate kinase was examined. Binding of Fru-1,6-P2 with pyruvate kinase exhibits positive cooperativity, with maximum binding of 4 mol Fru-1,6-P2 per enzyme tetramer. The Hill coefficient (nH), and the concentration of Fru-1,6-P2 giving half-maximal binding [FBP]1/2, are influenced by several factors. In 150 mM Tris-HCl, 70 mM KCl, 11 mM MgSO4 at pH 7.4, [FBP]1/2 is 2.6 microM and nH is 2.7. Phosphoenolpyruvate and pyruvate enhance the binding of Fru-1,6-P2 by decreasing [FBP]1/2. ADP and ATP alone had little influence on Fru-1,6-P2 binding. However, the nucleotides antagonize the response elicited by pyruvate or phosphoenolpyruvate, suggesting that the competent enzyme substrate complex does not favor Fru-1,6-P2 binding. Phosphorylation of pyruvate kinase or the inclusion of alanine in the medium, two actions which inhibit the enzyme activity, result in diminished binding of low concentrations of Fru-1,6-P2 with the enzyme. These effectors do not alter the maximum binding capacity of the enzyme but rather they raise the concentrations of Fru-1,6-P2 needed for maximum binding. Phosphorylation also decreased the nH for Fru-1,6-P2 binding from 2.7 to 1.7. Pyruvate kinase activity is dependent on a divalent metal ion. Substituting Mn2+ for Mg2+ results in a 60% decrease in the maximum catalytic activity for the enzyme and decreases the concentration of phosphoenolpyruvate needed for half-maximal activity from 1 to 0.1 mM. As a consequence, Mn2+ stimulates activity at subsaturating concentrations of phosphoenolpyruvate, but inhibits at saturating concentrations of the substrate or in the presence of Fru-1,6-P2. Both Mg2+ and Mn2+ diminish binding of low concentrations of Fru-1,6-P2; however, the concentrations of the metal ions needed to influence Fru-1,6-P2 binding exceed those needed to support catalytic activity.  相似文献   

5.
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase appears to be the only enzyme catalyzing the formation and hydrolysis of Fru-2,6-P2. The enzyme as we isolate it, contains a trace of tightly bound Fru-6-P. In this condition, it exhibited an ATPase activity comparable to its kinase activity. Inorganic phosphate stimulated all of its activities, by increasing the affinity for all substrates and increasing the Vmax of ATP and Fru-2,6-P2 hydrolysis. The enzyme catalyzed ADP/ATP and Fru-6-P/Fru-2,6-P2 exchanges at rates comparable to net reaction rates. It was phosphorylated by both [gamma-32P]ATP and [2-32P] Fru-2,6-P2, and the label from either donor was chased by either unlabeled donor, showing that the bound phosphate is hydrolyzed if not transferred to an acceptor ligand. The rate of labeling of the enzyme by [2-32P]Fru-2,6-P2 was 2 orders of magnitude greater than the maximal velocity of the bisphosphatase and therefore sufficiently fast to be a step in the hydrolysis. Both inorganic phosphate and Fru-6-P increased the rate and steady state of enzyme phosphorylation by ATP. Fru-2,6-P2 inhibited the ATPase and kinase reactions and Fru-6-P inhibited the Fru-2,6 bisphosphatase reaction while ATP and ADP had no effect. Removal of the trace of Fru-6-P by Glu-6-P isomerase and Glu-6-P dehydrogenase reduced enzyme phosphorylation by ATP to very low levels, greatly inhibited the ATPase, and rendered it insensitive to Pi, but did not affect ADP/ATP exchange. (alpha + beta)Methylfructofuranoside-6-P did not increase the rate or steady state labeling by ATP. These results suggest that labeling of the enzyme by ATP involved the production of [2-32P]Fru-2,6-P2 from the trace Fru-6-P. The 6-phosphofructo-2-kinase, fructose 2,6-bisphosphatase, and ATP/ADP exchange were all inhibited by diethylpyrocarbonate, suggesting the involvement of histidine residues in all three reactions. These results can be most readily explained in terms of two catalytic sites, a kinase site whose phosphorylation by ATP is negligible (or whose E-P is labile) and a Fru-2,6 bisphosphatase site which is readily phosphorylated by Fru-2,6-P2.  相似文献   

6.
In order to determine the role of fructose (Fru) 2,6-P2 in stimulation of phosphofructokinase in ischemic liver, tissue contents of Fru-2,6-P2, hexose-Ps, adenine nucleotides, and Fru-6-P,2-kinase:Fru-2,6-bisphosphatase were investigated during the first few minutes of ischemia. The Fru-2,6-P2 concentration in the liver changed in an oscillatory manner. Within 7 s after the initiation of ischemia, Fru-2,6-P2 increased from 6 to 21 nmol/g liver and decreased to 5 nmol/g liver within 30 s. Subsequently, it reached the maximum value at 50, 80, and 100 s and decreased to the basal concentration at 60, 90, and 120 s. Oscillatory patterns were also observed with Glc-6-P and Fru-6-P, but the ATP/ADP ratio decreased monotonically. Determination of Fru-6-P,2-kinase activity and the phosphorylation states of Fru-6-P,2-kinase:Fru-2,6-bisphosphatase demonstrated that at 7 and 50 s, where Fru-2,6-P2 was the highest, the enzyme was activated and mostly in a dephosphorylated form. On the other hand, at 0, 30, and 300 s, the enzyme was predominantly in the phosphorylated form. The concentration of cAMP in the liver also changed in an oscillatory manner between 0.5 to 1.3 nmol/g with varying frequency of 10 to 40 s. These results indicated that: (a) Fru-2,6-P2 was important in rapid activation of phosphofructokinase in the first few seconds and up to 2-3 min, and (b) the oscillation of Fru-2,6-P2 concentration was the result of activation and inhibition of Fru-6-P,2-kinase:Fru-2,6-bisphosphatase, which was caused by changes in the phosphorylation state of the enzyme.  相似文献   

7.
Arg252 of fructose-6-phosphate 1-kinase (PFK) from Bacillus stearothermophilus has been proposed to be involved in the binding of the substrate Fru-6-P. We demonstrate here that mutation of this residue to alanine converts the enzyme to a form with characteristics similar to those of its allosterically tight form. The mutant enzyme exhibits a high affinity for its inhibitor phosphoenolpyruvate (a 68-fold difference compared to wild type) and a dramatically decreased Fru-6-P affinity (1500-fold increase in Km). It is more sensitive to inhibition by high ATP concentrations than the wild type, and this inhibition is relieved by ADP, GDP, or higher Fru-6-P concentrations. In contrast, mutation of Arg252 to lysine increases the affinity of the enzyme for P-enolpyruvate by only 2-fold and increases its Km for Fru-6-P by only 50-fold. Sigmoidal kinetics with respect to Fru-6-P in the presence of P-enolpyruvate were observed with Hill numbers of 2.2, 2.4, and 1.7 for wild-type B. stearothermophilus PFK and the Arg252 to lysine and to alanine mutations, respectively. Unlike fructose-6-phosphate 1-kinase from Escherichia coli, in the absence of P-enolpyruvate, B. stearothermophilus PFK exhibits a hyperbolic profile with respect to Fru-6-P concentration. B. stearothermophilus PFK is sensitive to inhibition by high ATP concentrations and competitively inhibited by GDP or ADP. Our data indicate that Arg252 of B. stearothermophilus PFK plays a major role in both Fru-6-P binding and allosteric interaction between the subunits. However, this residue does not seem to participate directly in the catalytic process.  相似文献   

8.
The role of fructose-2,6-bisphosphate (Fru-2,6-P(2)) as a regulatory metabolite in photosynthetic carbohydrate metabolism was studied in transgenic Arabidopsis plants with reduced activity of Fru-6-phosphate,2-kinase/Fru-2,6-bisphosphatase. A positive correlation was observed between the Fru-6-phosphate,2-kinase activity and the level of Fru-2,6-P(2) in the leaves. The partitioning of carbon was studied by (14)CO(2) labeling of photosynthetic products. Plant lines with Fru-2,6-P(2) levels down to 5% of the levels observed in wild-type (WT) plants had significantly altered partitioning of carbon between sucrose (Suc) versus starch. The ratio of (14)C incorporated into Suc and starch increased 2- to 3-fold in the plants with low levels of Fru-2,6-P(2) compared with WT. Transgenic plant lines with intermediate levels of Fru-2,6-P(2) compared with WT had a Suc-to-starch labeling ratio similar to the WT. Levels of sugars, starch, and phosphorylated intermediates in leaves were followed during the diurnal cycle. Plants with low levels of Fru-2,6-P(2) in leaves had high levels of Suc, glucose, and Fru and low levels of triose phosphates and glucose-1-P during the light period compared with WT. During the dark period these differences were eliminated. Our data provide direct evidence that Fru-2,6-P(2) affects photosynthetic carbon partitioning in Arabidopsis. Opposed to this, Fru-2,6-P(2) does not contribute significantly to regulation of metabolite levels in darkness.  相似文献   

9.
Pham AS  Reinhart GD 《Biochemistry》2001,40(13):4150-4158
Using enzymatic assays and steady-state fluorescence emission, we performed a linkage analysis of the three-ligand interaction of fructose 6-phosphate (Fru-6-P), phosphoenolpyruvate (PEP), and MgATP on E187A mutant Escherichia coli phosphofructokinase (PFK). PEP allosterically inhibits Fru-6-P binding to E. coli PFK. The magnitude of antagonism is 90-fold in the absence and 60-fold in the presence of a saturating concentration of MgATP [Johnson, J. J., and Reinhart, G. D. (1997) Biochemistry 36, 12814-12822]. Substituting an alanine for the glutamate at position 187, located in the allosteric site (i.e., mutant E187A), activates Fru-6-P binding and inhibits the maximal rate of enzyme turnover [Lau, F. T.-K., and Fersht, A. R. (1987) Nature 326, 811-812]. The allosteric action of PEP appears to depend on the presence of the cosubstrate MgATP. In the presence of a saturating concentration of MgATP, PEP enhances the binding of Fru-6-P to the enzyme by a modest 2-fold. Decreasing the concentration of MgATP mitigates the extent of activation. At MgATP concentrations approaching 25 microM, PEP becomes insensitive to the binding of Fru-6-P. At MgATP concentrations < 25 microM, PEP "crosses over" and becomes antagonistic toward substrate binding. The present study examines the role of Glu 187 at the allosteric site in the binding of Fru-6-P and offers a more complex explanation of the mechanism than that described by traditional allosteric mechanistic models.  相似文献   

10.
During the R-->T transition in the tetrameric pig kidney fructose-1,6-bisphosphatase (Fru-1,6-P2ase, EC 3.1.3.11) a major change in the quaternary structure of the enzyme occurs that is induced by the binding of the allosteric inhibitor AMP (Ke HM, Liang JY, Zhang Y, Lipscomb WN, 1991, Biochemistry 30:4412-4420). The change in quaternary structure involving the rotation of the upper dimer by 17 degrees relative to the lower dimer is coupled to a series of structural changes on the secondary and tertiary levels. The structural data indicate that Lys-42 is involved in a complex set of intersubunit interactions across the dimer-dimer interface with residues of the 190's loop, a loop located at the pivot of the allosteric rotation. In order to test the function of Lys-42, we have replaced it with alanine using site-specific mutagenesis. The kcat and K(m) values for Lys-42-->Ala Fru-1,6-P2ase were 11 s-1 and 3.3 microM, respectively, resulting in a mutant enzyme that was slightly less efficient catalytically than the normal pig kidney enzyme. Although the Lys-42-->Ala Fru-1,6-P2ase was similar kinetically in terms of K(m) and kcat, the response to inhibition by AMP was significantly different than that of the normal pig kidney enzyme. Not only was AMP inhibition no longer cooperative, but also it occurred in two stages, corresponding to high- and low-affinity binding sites. Saturation of the high-affinity sites only reduced the activity by 30%, compared to 100% for the wild-type enzyme. In order to determine in what structural state the enzyme was after saturation of the high-affinity sites, the Lys-42-->Ala enzyme was crystallized in the presence of Mn2+, fructose-6-phosphate (Fru-6-P), and 100 microM AMP and the data collected to 2.3 A resolution. The X-ray structure showed the T state with AMP binding with full occupancy to the four regulatory sites and the inhibitor Fru-6-P bound at the active sites. The results reported here suggest that, in the normal pig kidney enzyme, the interactions between Lys-42 and residues of the 190's loop, are important for propagation of AMP cooperativity to the adjacent subunit across the dimer-dimer interface as opposed to the monomer-monomer interface, and suggest that AMP cooperativity is necessary for full allosteric inhibition by AMP.  相似文献   

11.
Glucosaminephosphate synthase (glucosaminephosphate isomerase (glutamine-forming), EC 5.3.1.19) prepared from rat liver by extraction in the presence of glucose 6-phosphate (Glc-6-P) followed by precipitation with (NH4)2SO4 is susceptible to digestion by trypsin. This enzyme, designated form A, can be converted to tryptic-insusceptible form B upon incubation with Glc-6-P or fructose 6-phosphate (Fru-6-P) at 37 degrees C. The two forms also differ in the degree of activation by dithiothreitol, the degree of inhibition by methyl-glyoxal and the behavior on DEAE-Sephadex and Sephadex G-200 column chromatography. During purification with DEAE-Sephadex followed by hydroxyapatite, form B is converted to form A if Fru-6-P is absent and form A to form B if Fru-6-P is present. The two forms are therefore intercovertible. Under the conditions of purification, form B is more stable than form A, since the purity and yield of the final product are greater with form B than with form A. These findings suggest that the two forms of glucosaminephosphate synthase differ conformationally and that the equilibrium position depends on the concentration of Fru-6-P. Glc-6-P is effective only when it gives rise to Fru-6-P by mediation of glucose-phosphate isomerase.  相似文献   

12.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

13.
The hepatic bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2,6-P2ase), E.C. 2.7-1-105/E.C. 3-1-3-46, is one member of a family of unique bifunctional proteins that catalyze the synthesis and degradation of the regulatory metabolite fructose-2,6-bisphosphate (Fru-2,6-P2). Fru-2,6-P2 is a potent activator of the glycolytic enzyme 6-phosphofructo-1-kinase and an inhibitor of the gluconeogenic enzyme fructose-1,6-bisphosphatase, and provides a switching mechanism between these two opposing pathways of hepatic carbohydrate metabolism. The activities of the hepatic 6PF-2-K/Fru-2,6-P2ase isoform are reciprocally regulated by a cyclic AMP-dependent protein kinase (cAPK)-catalyzed phosphorylation at a single NH2-terminal residue, Ser-32. Phosphorylation at Ser-32 inhibits the kinase and activates the bisphosphatase, in part through an electrostatic mechanism. Substitution of Asp for Ser-32 mimics the effects of cAPK-catalyzed phosphorylation. In the dephosphorylated homodimer, the NH2- and COOH-terminal tail regions also have an interaction with their respective active sites on the same subunit to produce an autoregulatory inhibition of the bisphosphatase and activation of the kinase. In support of this hypothesis, deletion of either the NH2- or COOH-terminal tail region, or both regions, leads to a disruption of these interactions with a maximal activation of the bisphosphatase. Inhibition of the kinase is observed with the NH2-truncated forms, in which there is also a diminution of cAPK phosphorylation to decrease the Km for Fru-6-P. Phosphorylation of the bifunctional enzyme by cAPK disrupts these autoregulatory interactions, resulting in inhibition of the kinase and activation of the bisphosphatase. Therefore, effects of cyclic AMP-dependent phosphorylation are mediated by a combination of electrostatic and autoregulatory control mechanisms.  相似文献   

14.
The kinetics of yeast phosphofructo-1-kinase has been studied in vitro. Effector concentrations (Fru-6-P, ATP, ADP, AMP, Pi, Fru-1,6-P2, and Fru-2,6-P2) and pH were adjusted so as to mimic intracellular concentrations in yeast. Under these conditions we were able to reproduce the measured in vivo rate of PFK. In addition, by reconstituting the intracellular conditions existing during aerobic and anaerobic glycolysis, we were able to reproduce in vitro the changes in the rate of PFK observed under these conditions. Without the addition of the newly discovered effector Fru-2,6-P2, in vitro rates of PFK are much lower than its in vivo rate. Changes in Fru-2,6-P2, Fru-1,6-P2, ATP, AMP, Pi, and pH in going from aerobic to anaerobic conditions all contributed somewhat to the change in the rate of PFK observed during the Pasteur effect, with no contribution coming from ADP. These studies show that the control of PFK under the condition of the Pasteur effect cannot be ascribed to changes in any one particular effector but rather to contributions from a variety of effectors. Also, the net change in the rate of PFK in the switch from anaerobic to aerobic glycolysis is small compared with the change in its dependence upon its substrate Fru-6-P, indicating a compensation mechanism.  相似文献   

15.
1. The fructose-2,6-bisphosphate (Fru-2,6-P2) content of mesenteric lymph nodes was measured in rats. 2. The effects of Fru-2,6-P2 on the activity of 6-phosphofructo-1-kinase (PFK-1) from rat mesenteric lymph nodes were also studied. 3. The affinity of the enzyme for fructose-6-phosphate was increased by Fru-2,6-P2 whereas the inhibition of the enzyme with high concentrations of ATP was released by Fru-2,6-P2. 4. The activity of lymphocyte PFK-1 was highly stimulated in a simultaneous presence of low concentrations of AMP and Fru-2,6-P2. 5. These results show that rat lymphocyte PFK-1 is highly regulated with Fru-2,6-P2 which means that glycolysis in rat lymphocytes is controlled by Fru-2,6-P2.  相似文献   

16.
PKF-2 from mussel mantle was phosphorylated by cAMP-dependent protein kinase. The phosphorylation does not change the enzyme activity at neutral pH values, but at acid pH the activity of the phosphorylated form is higher than the native PFK-2. With respect to the native enzyme, the activation consisted of a reduction in the Km for Fru-6-P and a decrease in the inhibitory effect of PEP. These results are in keeping with the stabilized concentration of Fru-2,6-P2 found in the mussel mantle during the physiological hypoxia caused by the closure of the valves.  相似文献   

17.
Glutamine-fructose-6-phosphate amidotransferase (GFAT) catalyzes the first committed step in the pathway for biosynthesis of hexosamines in mammals. A member of the N-terminal nucleophile class of amidotransferases, GFAT transfers the amino group from the L-glutamine amide to D-fructose 6-phosphate, producing glutamic acid and glucosamine 6-phosphate. The kinetic constants reported previously for mammalian GFAT implicate a relatively low affinity for the acceptor substrate, fructose 6-phosphate (Fru-6-P, K(m) 0.2-1 mm). Utilizing a new sensitive assay that measures the production of glucosamine 6-phosphate (GlcN-6-P), purified recombinant human GFAT1 (hGFAT1) exhibited a K(m) for Fru-6-P of 7 microm, and was highly sensitive to product inhibition by GlcN-6-P. In a second assay method that measures the stimulation of glutaminase activity, a K(d) of 2 microm was measured for Fru-6-P binding to hGFAT1. Further, we report that the product, GlcN-6-P, is a potent competitive inhibitor for the Fru-6-P site, with a K(i) measured of 6 microm. Unlike other members of the amidotransferase family, where glutamate production is loosely coupled to amide transfer, we have demonstrated that hGFAT1 production of glutamate and GlcN-6-P are strictly coupled in the absence of inhibitors. Similar to other amidotransferases, competitive inhibitors that bind at the synthase site may inhibit the synthase activity without inhibiting the glutaminase activity at the hydrolase domain. GlcN-6-P, for example, inhibited the transfer reaction while fully activating the glutaminase activity at the hydrolase domain. Inhibition of hGFAT1 by the end product of the pathway, UDP-GlcNAc, was competitive with a K(i) of 4 microm. These data suggest that hGFAT1 is fully active at physiological levels of Fru-6-P and may be regulated by its product GlcN-6-P in addition to the pathway end product, UDP-GlcNAc.  相似文献   

18.
Glucokinase is inhibited in the liver by a regulatory protein (GKRP) whose effects are increased by Fru-6-P and suppressed by Fru-1-P. To identify the binding site of these phosphate esters, we took advantage of the homology of GKRP to the isomerase domain of GlmS (glucosamine-6-phosphate synthase) and created 12 different mutants of rat GKRP. Mutations of three residues predicted to bind to Fru-6-P resulted in proteins that were approximately 5-fold (S110A) and 50-fold (S179A and K514A) less potent as inhibitors of glucokinase and had an at least 100-fold reduced affinity for the effectors. Mutation of another residue of the putative binding site (T109A) resulted in a 10-fold decrease in the inhibitory power and an inversion of the effect of sorbitol-6-P, a Fru-6-P analog. The replacement of Gly(107), a residue close to the binding site, by cysteine (as in GlmS and Xenopus GKRP) resulted in a protein that had 20 times more affinity for Fru-6-P and 30 times less affinity for Fru-1-P. These results are consistent with GKRP having one single binding site for phosphate esters. They also show that a missense mutation of GKRP can lead to a gain of function.  相似文献   

19.
Fructose-1,6-bisphosphatase (FBPase) operates at a control point in mammalian gluconeogenesis, being inhibited synergistically by fructose 2,6-bisphosphate (Fru-2,6-P(2)) and AMP. AMP and Fru-2,6-P(2) bind to allosteric and active sites, respectively, but the mechanism responsible for AMP/Fru-2,6-P(2) synergy is unclear. Demonstrated here for the first time is a global conformational change in porcine FBPase induced by Fru-2,6-P(2) in the absence of AMP. The Fru-2,6-P(2) complex exhibits a subunit pair rotation of 13 degrees from the R-state (compared with the 15 degrees rotation of the T-state AMP complex) with active site loops in the disengaged conformation. A three-state thermodynamic model in which Fru-2,6-P(2) drives a conformational change to a T-like intermediate state can account for AMP/Fru-2,6-P(2) synergism in mammalian FBPases. AMP and Fru-2,6-P(2) are not synergistic inhibitors of the Type I FBPase from Escherichia coli, and consistent with that model, the complex of E. coli FBPase with Fru-2,6-P(2) remains in the R-state with dynamic loops in the engaged conformation. Evidently in porcine FBPase, the actions of AMP at the allosteric site and Fru-2,6-P(2) at the active site displace engaged dynamic loops by distinct mechanisms, resulting in similar quaternary end-states. Conceivably, Type I FBPases from all eukaryotes may undergo similar global conformational changes in response to Fru-2,6-P(2) ligation.  相似文献   

20.
Two phosphofructokinase genes have been described previously in Entamoeba histolytica. The product of the larger of the two genes codes for a 60-kDa protein that has been described previously as a pyrophosphate (PP(i))-dependent enzyme, and the product of the second, coding for a 48-kDa protein, has been previously reported to be a PP(i)-dependent enzyme with extremely low specific activity. Here it is found that the 48-kDa protein is not a PP(i)-dependent enzyme but a highly active ATP-requiring enzyme (k(cat) = 250 s(-)1) that binds the cosubstrate fructose 6-phosphate (Fru-6-P) with relatively low affinity. This enzyme exists in concentration- and ATP-dependent tetrameric active and dimeric inactive states. Activation is achieved in the presence of nucleoside triphosphates, ADP, and PP(i), but not by AMP, P(i), or the second substrate Fru-6-P. Activation by ATP is facilitated by conditions of molecular crowding. Divalent cations are not required, and no phosphoryl transfer occurs during activation. Kinetics of the activated enzyme show cooperativity with Fru-6-P (Fru-6-P(0.5) = 3.8 mm) and inhibition by high ATP and phosphoenolpyruvate. The enzyme is active without prior activation in extracts of E. histolytica. The level of mRNA, the amount of enzyme protein, and the enzyme activity of the 48-kDa enzyme are about one-tenth that of the 60-kDa enzyme in extracts of E. histolytica trophozoites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号