首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thyX gene for thymidylate synthase of the Lyme borreliosis (LB) agent Borrelia burgdorferi is located in a 54-kb linear plasmid. In the present study, we identified an orthologous thymidylate synthase gene in the relapsing fever (RF) agent Borrelia hermsii, located it in a 180-kb linear plasmid, and demonstrated its expression. The functions of the B. hermsii and B. burgdorferi thyX gene products were evaluated both in vivo, by complementation of a thymidylate synthase-deficient Escherichia coli mutant, and in vitro, by testing their activities after purification. The B. hermsii thyX gene complemented the thyA mutation in E. coli, and purified B. hermsii ThyX protein catalyzed the conversion of dTMP from dUMP. In contrast, the B. burgdorferi ThyX protein had only weakly detectable activity in vitro, and the B. burgdorferi thyX gene did not provide complementation in vivo. The lack of activity of B. burgdorferi's ThyX protein was associated with the substitution of a cysteine for a highly conserved arginine at position 91. The B. hermsii thyX locus was further distinguished by the downstream presence in the plasmid of orthologues of nrdI, nrdE, and nrdF, which encode the subunits of ribonucleoside diphosphate reductase and which are not present in the LB agents B. burgdorferi and Borrelia garinii. Phylogenetic analysis suggested that the nrdIEF cluster of B. hermsii was acquired by horizontal gene transfer. These findings indicate that Borrelia spp. causing RF have a greater capability for de novo pyrimidine synthesis than those causing LB, thus providing a basis for some of the biological differences between the two groups of pathogens.  相似文献   

2.
Abstract Polyspecific antibodies present in ascitic fluids of mice (pMIAFs) immunized with whole Borrelia burgdorferi cells exerted borreliacidal activity in vitro when tested with complement and homologous antigen but not with heterologous B. hermsii . Similarly, monospecific mouse antibodies obtained by immunizing mice with purified preparations of outer surface protein A and B of B. burgdorferi were borreliacidal. On the contrary, mouse monospecific antibodies raised against the 41-kDa flagellar protein of B. burgdorferi did not kill borreliae in the presence of complement. A complement-mediated, in vitro, borreliacidal activity was observed in human sera from patients with Lyme disease when antibodies against OspA and/or OspB were detectable in sera by the Western blotting technique. The in vitro borreliacidal activity of human sera was evident after 14 h incubation with live B. burgdorferi spirochaetes and complement, whereas antibodies present in mouse immune ascitic fluids killed borreliae after 1 h incubation.  相似文献   

3.
Causative agents of Lyme disease and relapsing fever, including Borrelia burgdorferi and Borrelia hermsii, respectively, are unusual among bacteria in that they possess a segmented genome with linear DNA molecules terminated by hairpin ends, known as telomeres. During replication, these telomeres are processed by the essential telomere resolvase, ResT, in a unique biochemical reaction known as telomere resolution. In this study, we report the identification of the B. hermsii resT gene through cross-species hybridization. Sequence comparison of the B. hermsii protein with the B. burgdorferi orthologue revealed 67% identity, including all the regions currently known to be crucial for telomere resolution. In vitro studies, however, indicated that B. hermsii ResT was unable to process a replicated B. burgdorferi type 2 telomere substrate. In contrast, in vivo cross-species complementation in which the native resT gene of B. burgdorferi was replaced with B. hermsii resT had no discernible effect, even though B. burgdorferi strain B31 carries at least two type 2 telomere ends. The B. burgdorferi ResT protein was also able to process two telomere spacing mutants in vivo that were unresolvable in vitro. The unexpected differential telomere processing in vivo versus in vitro by the two telomere resolvases suggests the presence of one or more accessory factors in vivo that are normally involved in the reaction. Our current results are also expected to facilitate further studies into ResT structure and function, including possible interaction with other Borrelia proteins.  相似文献   

4.
5.
After unsuccessful attempts to recover a viable RecA-deficient mutant of the Lyme borreliosis agent Borrelia burgdorferi, we characterized the functional activities of RecA of B. burgdorferi, as well as RecA of the relapsing fever spirochete Borrelia hermsii and the free-living spirochete Leptospira biflexa, in a recA mutant of Escherichia coli. As a control, E. coli RecA was expressed from the same plasmid vector. DNA damage repair activity was assessed after exposure of the transgenic cells to UV light or the radiomimetic chemicals methyl methanesulfonate and mitomycin C. Recombination activity in the cells was assessed by using an assay for homologous recombination between repeats in the chromosome and by measuring the ability of the cells to foster lytic growth by red gam mutant bacteriophage lambda. Overall, we found that transgenic cells with recA genes of B. burgdorferi, B. hermsii, and L. biflexa had approximately equivalent activities in promoting homologous recombination in the lacZ duplication assay, but cells with B. burgdorferi recA and, most notably, B. hermsii recA were significantly less capable than cells with L. biflexa recA or E. coli recA in responding to DNA damage or in facilitating plaque formation in the phage assay. The comparatively poor function of Borrelia recA in the latter set of assays may be the consequence of impaired coordination in the loading of the transgenic RecA by RecBCD and/or RecFOR in E. coli.  相似文献   

6.
Lyme borreliosis is an infectious disease caused by the tick-borne spirochete Borrelia burgdorferi, which carries the potential for chronic infection. Ag on the etiologic Borrelia are currently being defined structurally and their ability to elicit immune responses delineated. EBV can be used to immortalize human B. burgdorferi-specific B cells from infected donors and generate antibodies against antigenic epitopes encountered in natural infection. A human mAb secreting EBV-transformed B cell line, D7, has been developed that is specific for a 93-kDa B. burgdorferi protein and has been used to characterize this potentially important Ag. D7 produces an IgG3 antibody that detects the 93-kDa Ag as well as smaller fragments at 46 kDa and lower molecular mass. The antibody detects similar epitopes on all B. burgdorferi isolates tested and on a Borrelia hermsii protein with molecular mass greater than 100 kDa but binds poorly to Treponema species. In contrast, polyclonal sera from Lyme disease patients show little binding to the homologous Ag in B. hermsii. Structurally, the 93-kDa protein is associated with the flagellum and may be firmly anchored in the protoplasmic cylinder. It is not solubilized by nonionic detergent treatment of the whole Borrelia. Antibodies against a comparable m.w. protein are present in sera from patients with both early and late infection. Thus, antibodies against this Ag are a sensitive and specific marker of Borrelia infection. This Ag is likely of structural importance and may represent a target of host defenses.  相似文献   

7.
Relapsing-fever spirochetes achieve high cell densities (>10(8)/ml) in their host's blood, while Lyme disease spirochetes do not (<10(5)/ml). This striking contrast in pathogenicity of these two groups of bacteria suggests a fundamental difference in their ability to either exploit or survive in blood. Borrelia hermsii, a tick-borne relapsing-fever spirochete, contains orthologs to glpQ and glpT, genes that encode glycerophosphodiester phosphodiesterase (GlpQ) and glycerol-3-phosphate transporter (GlpT), respectively. In other bacteria, GlpQ hydrolyzes deacylated phospholipids to glycerol-3-phosphate (G3P) while GlpT transports G3P into the cytoplasm. Enzyme assays on 17 isolates of borreliae demonstrated GlpQ activity in relapsing-fever spirochetes but not in Lyme disease spirochetes. Southern blots demonstrated glpQ and glpT in all relapsing-fever spirochetes but not in the Lyme disease group. A Lyme disease spirochete, Borrelia burgdorferi, that was transformed with a shuttle vector containing glpTQ from B. hermsii produced active enzyme, which demonstrated the association of glpQ with the hydrolysis of phospholipids. Sequence analysis of B. hermsii identified glpF, glpK, and glpA, which encode the glycerol facilitator, glycerol kinase, and glycerol-3-phosphate dehydrogenase, respectively, all of which are present in B. burgdorferi. All spirochetes examined had gpsA, which encodes the enzyme that reduces dihydroxyacetone phosphate (DHAP) to G3P. Consequently, three pathways for the acquisition of G3P exist among borreliae: (i) hydrolysis of deacylated phospholipids, (ii) reduction of DHAP, and (iii) uptake and phosphorylation of glycerol. The unique ability of relapsing-fever spirochetes to hydrolyze phospholipids may contribute to their higher cell densities in blood than those of Lyme disease spirochetes.  相似文献   

8.
Borrelia hermsii, Borrelia parkeri, Borrelia anserina, and Borrelia coriaceae produced several lipoproteins identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of bacteria grown in [3H]palmitate. Five major acylated proteins were demonstrated by sequential alkaline and acid hydrolysis. High-pressure liquid chromatography of isolated proteins confirmed that covalently bound radioactivity was represented by fatty acids.  相似文献   

9.
Fifty Borrelia isolates from ticks and rodents from several geographic regions of the southern United States were analyzed by genomic macrorestriction analysis. Significant genetic diversity was observed among them. These isolates segregated into 4 major clusters and 10 subclusters, which are correlated with the genospecies distribution. Nineteen pulsed-field gel electrophoresis (PFGE) types were recognized among the isolates. The genospecies Borrelia andersonii and Borrelia bissettii consisted of 5 and 2 subclusters, respectively. Two subclusters comprised the Borrelia burgdorferi sensu stricto (s. s.) strains. These results indicated that PFGE is a suitable molecular typing method for B. burgdorferi at both the genospecies and strain levels. Seventeen representative isolates from different PFGE groups were analyzed by restriction fragment length polymorphism (RFLP) and sequence analysis of flaB. Twenty-three AluI, 3 CelII, and 11 DdeI RFLP patterns were found among strains from the B. burgdorferi sensu lato (s. l.) complex and the relapsing fever borreliae complex. Three genospecies in the B. burgdorferi s. l. complex and 1 species in the relapsing fever borreliae complex were recognized. Phylogenetic analysis based on nucleotide sequences of flaB indicated that all the Borrelia strains analyzed here could be divided into 2 parts, i.e., B. burgdorferi s. l. complex and the relapsing fever borreliae complex. The flaB appears to be a useful target gene to screen and identify strains from both B. burgdorferi s. l. and relapsing fever borreliae complexes.  相似文献   

10.
OspA and B proteins of Borrelia burgdorferi and Vmp proteins of Borrelia hermsii are abundant outer membrane lipoproteins, whose expression varies with the environment. The genes for these proteins have the '-35' and '-10' elements of a sigma70-type promoter. Deletions of the promoters for these genes were analysed with a chloramphenicol acetyltransferase (CAT) reporter gene and plasmid constructs that were stably maintained in Escherichia coli or transiently transfected into B. burgdorferi. Reporter expression was measured as susceptibility of transformed E. coli cells to chloramphenicol and the CAT activity of E. coli and B. burgdorferi lysates in vitro. Presence of the '-10' element was essential for full activity in both B. burgdorferi and E. coli. Upstream of the '-35' elements of the ospAB and vmp promoters were tracts with Ts in 16 of 20 positions for B. burgdorferi and 18 of 20 positions for B. hermsii. Deletion of the T-rich region from the ospAB or vmp promoter caused a greater reduction of CAT activity in B. burgdorferi than in E. coli. The findings indicate that ospAB and vmp promoters are extended promoters with two parts: (i) a core region containing typical '-35' and '-10' elements and (ii) a unique T-rich region.  相似文献   

11.
Plasmid location of Borrelia purine biosynthesis gene homologs.   总被引:18,自引:9,他引:9       下载免费PDF全文
N Margolis  D Hogan  K Tilly    P A Rosa 《Journal of bacteriology》1994,176(21):6427-6432
The Lyme disease spirochete Borrelia burgdorferi must survive in both its tick vector and its mammalian host to be maintained in nature. We have identified the B. burgdorferi guaA gene encoding GMP synthetase, an enzyme involved in de novo purine biosynthesis that is important for the survival of bacteria in mammalian blood. This gene encodes a functional product that will complement an Escherichia coli GMP synthetase mutant. The gene is located on a 26-kb circular plasmid, adjacent to and divergent from the gene encoding the outer surface protein C (OspC). The guaB gene homolog encoding IMP dehydrogenase, another enzyme in the purine biosynthetic pathway, is adjacent to guaA. In Borrelia hermsii, a tick-borne relapsing fever spirochete, the guaA and guaB genes are located on a linear plasmid. These are the first genes encoding proteins of known function to be mapped to a borrelial plasmid and the only example of genes encoding enzymes involved in the de novo purine biosynthesis pathway to be mapped to a plasmid in any organism. The unique plasmid location of these and perhaps other housekeeping genes may be a consequence of the segmented genomes in borreliae and reflect the need to adapt to both the arthropod and mammalian environments.  相似文献   

12.
Fifty-three southern USA Borrelia isolates were characterized using randomly amplified polymorphic DNA fingerprinting analysis (RAPD). Twenty-nine types were recognized among 37 B. andersonii strains, seven types among eight B. bissettii strains, and seven types among seven B. burgdorferi sensu stricto strains. Strain TXW-1 formed a separate RAPD type. Nearly complete sequences of the rrs genes from 17 representative southern Borrelia were determined. The similarity values were found to be 96-100% within the B. burgdorferi sensu lato (s.l.) complex, 94-99% among the relapsing fever borreliae, and 93-99% between the two complexes. Phylogenetic analysis indicated that all the Borrelia strains we analyzed could be divided into two parts: the B. burgdorferi s.l. complex and the relapsing fever borreliae complex. TXW-1 segregated with the North American relapsing fever borreliae and formed a separate subbranch.  相似文献   

13.
Spirochetes of the genus Borrelia have genomes composed of both linear and circular replicons. We characterized the genomic organization of B. burgdorferi, B. hermsii, B. turicatae, and B. anserina with pulsed-field gel electrophoresis. All four species contained a linear chromosome approximately 1 Mb in size and multiple linear plasmids in the 16- to 200-kb size range. Plasmids 180 and 170 kb in size, present in the relapsing fever agents B. hermsii and B. turicatae but not in the other two species, behaved as linear duplex DNA molecules under different electrophoretic conditions. A variant of strain HSI of B. hermsii had a 180-kb circular instead of linear plasmid. There were no detectable differences in the growth rates or in the expression of cellular proteins between cells bearing linear forms and those bearing circular forms of the plasmid. The conversion to a circular conformation of monomeric length was demonstrated by the introduction of strand breaks with irradiation, restriction endonuclease analysis, and direct observation of the DNA molecules by fluorescent microscopy. Consideration of different models for the replication of linear DNA suggests that circular intermediates may be involved in the replication of linear replicons in Borrelia spp.  相似文献   

14.
Abstract A murine monoclonal antibody, designated MA-2G9, directed against outer surface protein A (OspA) of the Lyme disease spirochete, Borrelia burgdorferi , has been produced. Antibody MA-2G9, IgG1 subclass, was purified by affinity chromatography on protein G Sepharose column and used for purification of OspA antigen from Borrelia burgdorferi cell lysate. Epitope specificity was studied by Western immunoblotting, using several strains of B. burgdorferi and non-Lyme disease bacteria such as Treponema pallidum and B. hermsii . The MA-2G9 monoclonal antibody reacted specifically with recombinant OspA aas well as with native OspA in sonicated B. burgdorferi strains. No reaction was observed with T. pallidum, Escherichia coli, Staphylococcus aureus and B. hermsii lysates. The MA-2G9 antibody also recognized the denatured form of OspA indicating that it is directed against sequential epitope and not conformational epitope.  相似文献   

15.
The aim of the present study was to assess the possible use of a modified medium, prepared in the laboratory using the constituents of Barbour-Stonner-Kelly (BSK) medium and medium 199 as base, for the culture of Borrelia strains, comparing the growth of individual strains in this medium and in the BSK-H medium, and the protein profile and antigenic characteristics of Borrelia proteins expressed in these media. A qualitative evaluation of growth of Borrelia species was made with acceptable results (morphology and motility), but during a quantitative evaluation using the three main genospecies of Borrelia, the better results were obtained with a B. burgdorferi sensu stricto strain. The modified medium did not enable the growth of a B. afzelii strain. The protein profile and antigenic characteristic of the expressed proteins in the modified medium were studied with satisfactory results. These results suggest the modified medium as an alternative for the cultivation of Borrelia strains, with some limitations, in poorly-resourced laboratories.  相似文献   

16.
AIMS: 16S rDNA sequences of Borrelia burgdorferi sensu lato were aligned with the 16S rDNA sequences of Borrelia hermsii, Borrelia turicatae, and Borrelia lonestari in order to identify primers that might be used to more specifically identify agents of human Lyme disease in ticks in human skin samples. METHODS AND RESULTS: Standard polymerase chain reaction (PCR), using an oligonucleotide sequence, designated TEC1, was shown, in combination with a previously developed primer (LD2) to amplify strains of B. burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii, but not the non-Lyme causing B. hermsii or B. turicatae. This primer pair, designated Bbsl, was successfully used to amplify B. burgdorferi sensu lato from skin biopsies of patients with Lyme disease symptoms as well as from Ixodes scapularis, Amblyomma americanum and Dermacentor variabilis ticks. CONCLUSIONS: The primer set Bbsl allows for the rapid detection and differentiation of B. burgdorferi sensu lato from non-Lyme disease-causing Borrelia species in ticks and human tissues. SIGNIFICANCE AND IMPACT OF THE STUDY: The PCR primer set, Bbsl, will greatly facilitate detection of the causative agents of Lyme disease in infected ticks and human skin samples assisting in epidemiological studies, and potentially allowing for a more rapid diagnosis of the disease in patients.  相似文献   

17.
Spirochete bacteria of the Borrelia burgdorferi sensu lato complex cause Lyme borreliosis. The three pathogenic subspecies Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu stricto differ in their disease profiles and susceptibility to complement lysis. We investigated whether complement resistance of Borreliae could be due to acquisition of the main soluble inhibitors of the alternative complement pathway, factor H and the factor H-like protein 1. When exposed to nonimmune EDTA-plasma, the serum-resistant B. afzelii and B. burgdorferi sensu stricto strains bound factor H/factor H-like protein 1 to their surfaces. Assays with radiolabeled proteins showed that factor H bound strongly to the B. burgdorferi sensu stricto strain. To identify factor H ligands on the borrelial surface, we analyzed a panel of outer surface proteins of B. burgdorferi sensu stricto with the surface plasmon resonance technique. The outer surface lipoprotein OspE was identified as a specific ligand for factor H. Using recombinant constructs of factor H, the binding site for OspE was localized to the C-terminal short consensus repeat domains 15-20. Specific binding of factor H to B. burgdorferi sensu stricto OspE may help the pathogen to evade complement attack and phagocytosis.  相似文献   

18.
Evolution of the Borrelia burgdorferi outer surface protein OspC.   总被引:1,自引:0,他引:1       下载免费PDF全文
The genes coding for outer surface protein OspC from 22 Borrelia burgdorferi strains isolated from patients with Lyme borreliosis were cloned and sequenced. For reference purposes, the 16S rRNA genes from 17 of these strains were sequenced after being cloned. The deduced OspC amino acid sequences were aligned with 12 published OspC sequences and revealed the presence of 48 conserved amino acids. On the basis of the alignment, OspC could be divided into an amino-terminal relatively conserved region and a relatively variable region in the central portion. The distance tree obtained divided the ospC sequences into three groups. The first group contained ospC alleles from all (n = 13) sensu stricto strains, the second group contained ospC alleles from seven Borrelia afzelii strains, and the third group contained ospC alleles from five B. afzelii and all (n = 9) Borrelia garinii strains. The ratio of the mean number of synonymous (dS) and nonsynonymous (dN) nucleotide substitutions per site calculated for B. burgdorferi sensu stricto, B. garinii, and B. afzelii ospC alleles suggested that the polymorphism of OspC is due to positive selection favoring diversity at the amino acid level in the relatively variable region. On the basis of the comparison of 16S rRNA gene sequences, Borrelia hermsii is more closely related to B. afzelii than to B. burgdorferi sensu stricto and B. garinii. In contrast, the phylogenetic tree obtained for the B. hermsii variable major protein, Vmp33, and 18 OspC amino acid sequences suggested that Vmp33 and OspC from B. burgdorferi sensu stricto strains share a common evolutionary origin.  相似文献   

19.
Abstract Antigenic variation has been studied in detail for the etiological agent of relapsing fever, Borrelia hermsii . The variable major proteins (vmps) are found at its cell surface, enabling it to avoid the host's immune response. We have cloned and sequenced the vmp -gene ( vmp )-like sequences from the Borrelia miyamotoi strains HT31 and FR64b and the deduced amino acid sequences were compared with the published vmp proteins vmp3, vmp24, and vmp33 of B. hermsii . The sequences were aligned and revealed pairwise sequence identities ranging from 45 to 51%, and differences were scattered throughout the sequences. Southern hybridization using the cloned vmp -like sequence of strain HT31 as a probe suggested that the vmp homologues reside on the linear plasmids of B. miyamotoi . The probe hybridized weakly with B. hermsii linear plasmids and restriction digests. These results suggest that B. miyamotoi has sequences resembling the vmp genes in B. hermsii .  相似文献   

20.
Inbred C57bl/6 mice were challenged with high-passage Borrelia afzelii, Borrelia garinii and Borrelia burgdorferi sensu stricto and tested for antigen specific T-cell response in vitro. Sonicated preparations of washed spirochetes were potent cell activators, capable of stimulating polyclonal proliferation after 72h of culture while increasing the incubation time up to 120h provoked specific cell-mediated response. Isolated murine spleocytes previously sensitized to B. burgdorferi sensu lato but not those from control mice could be induced for antigen-specific proliferation in vitro, as revealed by [3H]thymidine incorporation assay, Moreover, in mice presensitized to B. burgdorferi sensu lato, detectable cell-mediated response could be induced only with antigen preparations derived from a corresponding strain but not with those obtained from other Borrelia genospecies. The current study emphasises that the B. burgdorferi antigen-specific response may also be expected in different genospecies infections in men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号