首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effects of chloramine-T, a reagent specific to methionine residues, on sodium channel gating mechanisms was investigated in neuroblastoma cell membrane. Treating the membrane with chloramine was found to retard inactivation kinetics and considerably reduce the slope of the inactivation curve, while pushing the activation curve toward hyperpolarization ranges without changing the slope of the central portion perceptibly. Effective activation charge, as determined from the limiting logarithmic slope of activation, was reduced by a factor of 1.17. Possible reasons for the changes observed in sodium channel gating mechanisms are discussed.Institute of Cytology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 789–795, November–December, 1987.  相似文献   

3.
Romero PJ  Romero EA 《Cell calcium》1999,26(3-4):131-137
The effect of cell ageing on Ca2+ entry was studied in this work, using sub-populations of young and old human red cells, separated by stringent percoll density gradients. Additionally, the influence of an osmotic gradient was investigated as a model for shear stress. Ca2+ entry was assessed at 37 degrees C, under conditions where the Ca2+ pump was either inhibited by NaVO3 (0.5-10 mM) or inactivated by ATP depletion. The entry was linear with time up to 1 h. No differences in Ca2+ influx between the two sub-populations were detected in isotonic Na(+)-medium. In contrast, after incubation in anisosmotic media, Ca2+ entry into old cells was significantly higher than into younger cells. In hypotonic Na(+)-medium, the entry into old cells was not affected by La3+ (10 microM) whilst it was partially blocked by Gd3+ at a similar level (half-maximal effect attained with about 1 microM Gd3+). The entry into young cells was only slightly stimulated by these lanthanides at low concentrations (10 microM), regardless of the tonicity of incubation medium. Further increasing Gd3+ levels above 10 microM markedly enhanced Ca2+ entry into both cell types. The selective blockade of Ca2+ influx by low Gd3+ concentrations suggests presence of mechano-sensitive channels, that become preferentially activated in old cells. Activation of these channels during in-vivo microcirculation may help to explain the increased Ca2+ content of senescent cells.  相似文献   

4.
Phosphatidic acid added to the medium markedly elevated intracellular cyclic GMP content in cultured neuroblastoma N1E 115 cells. There was a significant elevation of cyclic GMP with 1 micrograms/ml and a maximum (70-fold) elevation with 100 micrograms/ml of phosphatidic acid. Other natural phospholipids did not increase, or increased only slightly, the cyclic GMP content in the cells. The elevation of cyclic GMP content by phosphatidic acid was absolutely dependent on extracellular calcium. Phosphatidic acid stimulated the influx of calcium into neuroblastoma cells 2- to 5-fold. The pattern of the calcium influx induced by phosphatidic acid was comparable to that of cyclic GMP elevation. The stimulation of calcium influx by phosphatidic acid was also observed in cultured heart cells, indicating that phosphatidic acid acts as a calcium ionophore or opens a specific calcium-gate in a variety of cell membranes. Treatment of neuroblastoma cells with phospholipase C increased 32Pi labeling of phosphatidic acid, stimulated the influx of calcium, and elevated the cyclic GMP content in the cells. Thus exogenous as well as endogenous phosphatidic acid stimulates the translocation of calcium across cell membranes and, as a consequence, induces the synthesis of cyclic GMP in the neuroblastoma cells.  相似文献   

5.
We have observed the opening and closing of single batrachotoxin (BTX)-modified sodium channels in neuroblastoma cells using the patch-clamp method. The conductance of a single BTX-modified channel is approximately 10 pS. At a given membrane potential, the channels are open longer than are normal sodium channels. As is the case for normal sodium channels, the open dwell times become longer as the membrane is depolarized. For membrane potentials more negative than about -70 mV, histograms of both open-state dwell times and closed-state dwell times could be fit by single exponentials. For more depolarized potentials, although the open-state histograms could still be fit by single exponentials, the closed-state histograms required two exponentials. This data together with macroscopic voltage clamp data on the same system could be accounted for by a three-state closed-closed-open model with transition rates between these states that are exponential functions of membrane potential. One of the implications of this model, in agreement with experiment, is that there are always some closed BTX-modified sodium channels, regardless of membrane potential.  相似文献   

6.
Abscisic acid (ABA) is a hormone conserved from cyanobacteria to higher plants, where it regulates responses to environmental stimuli. ABA also plays a role in mammalian physiology, pointedly in inflammatory responses and in glycemic control. As the animal ABA receptor is on the intracellular side of the plasma membrane, a transporter is required for the hormone’s action. Here we demonstrate that ABA transport in human nucleated cells occurs via the anion exchanger AE2. Together with the recent demonstration that ABA influx into human erythrocytes occurs via Band 3, this result identifies the AE family members as the mammalian ABA transporters.  相似文献   

7.
We studied the dose-response relationship between gamma radiation and batrachotoxin-stimulated sodium influx in neuroblastoma cells in tissue culture. We also tested the hypothesis that changes in sodium channel conformation may alter the radiosensitivity of the channel. We found that gamma radiation inhibited toxin-stimulated 22Na uptake at doses beyond a threshold of 200-300 Gy. No effects were seen following doses below 100 Gy. This inhibition of sodium permeability was seen when the cells were irradiated with sodium channels in the closed or inactivated, nonconducting states. However, when the channels were in the toxin-opened, conducting state, gamma radiation had no effect at doses up to 2000 Gy. Our results support earlier electrophysiological studies that showed that high doses of ionizing radiation are required to produce a measurable decrease in sodium permeability. In addition, our data suggest that by changing the sodium channel conformation, batrachotoxin appears to alter radiosensitive chemical bonds in the gating or ion-conducting portion of the channel.  相似文献   

8.
In human neuroblastoma IMR32 cells, the effect of the anti-depressant maprotiline on baseline intracellular Ca2+ concentrations ([Ca2+]i) was explored by using the Ca2+-sensitive probe fura-2. Maprotiline at concentrations greater than 100 microM caused a rapid rise in [Ca2+]i in a concentration-dependent manner (EC50 = 200 microM). Maprotiline-induced [Ca2+]i rise was reduced by 50% by removal of extracellular Ca2+. Maprotiline-induced [Ca2+]i rises were inhibited by half by nifedipine, but was unaffected by verapamil or diiltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of maprotiline on [Ca2+]i was abolished. U73122, an inhibitor of phospholipase C, did not affect maprotiline-induced [Ca2+]i rises. These findings suggest that in human neuroblastoma cells, maprotiline increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum via a phospholiase C-independent manner.  相似文献   

9.
Vasopressin (VP) rapidly increased 45Ca2+ efflux. A VP antagonist prevented VP from mobilizing Ca2+ and stimulating DNA synthesis. Prostaglandin F2 alpha (PGF2 alpha) also stimulated rapid 45Ca2+ release. The effectiveness of different prostaglandins corresponded to their effectiveness as mitogens. The removal of external Na+ or Ca2+ had no effect on VP-or PGF2 alpha-induced 45Ca2+ release. The present results indicate that the mobilization of intracellular Ca2+ by these hormones is independent of Na+ or Ca2+ influx and that Ca2+ mobilization is important for growth stimulation.  相似文献   

10.
11.
K Ozawa 《Human cell》1999,12(1):57-61
A hematopoietic stem cell is considered to be one of the ideal targets for gene therapy, and there is expectation that gene therapy will be established based on the technology of hematopoietic stem cell transplantation. However, in recent clinical trials of stem cell gene therapy for monogenic diseases, significant clinical improvement has not been reported. One of the main obstacles is the low efficiency of gene transfer into hematopoietic stem cells. Many investigators have been trying to improve the transduction efficiency to the clinically applicable level. Another approach to solve this problem is to develop the method for selective expansion of transduced hematopoietic stem cells in vivo. We are currently developing novel regulatory genes (selective amplifier genes) for stem cell gene therapy.  相似文献   

12.
We investigated the actions of human recombinant α2-interferon and a secondary messenger of its action, 2′-5′-oligoadenylate, on tetrodotoxin (TTX)-sensitive sodium transport using human (IMR-32) and murine (NIE-115) neuroblastoma cells. In biochemical experiments using22Na, human interferon was shown to increase entry of22Na into IMR-32 neuroblastoma cells through the channels activated by veratrine and scorpion toxin. This increase was clearly dose-dependent. Cell treatment with TTX completely inhibited this sodium transport. On the contrary, 2′-5′-oligoadenylate depressed entry of22Na into neuroblastoma cells. The activation effect was not observed under the action of human α2-interferon on TTX-sensitive sodium flows to the murine neuroblastoma cells, which demonstrated the species-related specificity of this agent.  相似文献   

13.
Thellungiella halophila is a useful model species for research into plant salt tolerance. It is closely related to Arabidopsis thaliana, but shows considerably higher salt tolerance. Comparative analysis of ion homeostasis in the two species allows the identification of ion transport pathways that are critical for salt tolerance and provides the basis for future studies into their molecular features. Previous studies indicated that salt tolerance in T. halophila is accompanied by low accumulation of Na in the leaves. Kinetic analysis of net ion uptake over three days confirmed lower Na uptake and K loss in T. halophila compared with A. thaliana. Differential net Na uptake rates were still apparent after 6 weeks of salt treatment. To assess the contribution of unidirectional Na fluxes to net Na uptake, kinetic studies of (22)Na fluxes were carried out in both species. The results show that unidirectional root Na influx is significantly lower in salt-grown T. halophila plants than in A. thaliana exposed to the same level of salinity (100 mM). Quantitative comparison of unidirectional influx and net Na accumulation suggests that both species operate efficient Na efflux, which partly compensates for Na influx. Kinetic analysis of (22)Na efflux indicated higher root Na efflux in A. thaliana than in T. halophila. Thus A. thaliana appears to spend more energy on Na export while nevertheless accumulating more Na than T. halophila. It is proposed that limitation of Na influx is the main mechanism by which T. halophila secures low net Na accumulation in saline conditions. This strategy provides the basis for a positive balance between growth and net Na uptake rates, which is essential for survival in high salt.  相似文献   

14.
An inactivation model previously developed to characterize the rate of enzyme activity loss in unstirred solutions was extended to take into account orthokinetic interactions resulting from convective mixing. A synergistic relationship between shear rate and temperature was observed; the rate of inactivation of the enzyme dextransucrase was unaffected by the action of shear below 25 degrees C, but was increased by the shear rate at 30 degrees C. Shear rate does not appear to influence the equilibrium between native and denatured dextransucrase either directly in solution or indirectly by augmenting the turnover of the gas-liquid interface. However, a second-order plot of the inverse of relative activity (A(O)/A) versus Gt (shear rate x time) of dextransucrase at a constant temperature was linear because of the influence of shear on the coagulation of the denatured enzyme. The addition of 0.01 g L(-1) of polyethylene glycol (MW 20,000) blocked this coagulation reaction, thereby completely inhibiting the shear-induced inactivation of dextransucrase at 30 degrees C. (c) 1993 John Wiley & Sons, Inc.  相似文献   

15.
Suspensions of intact, yeast-like cells of Sporothrix schenckii exhibited an acid phosphatase (EC 3.1.3.2) activity against p-nitrophenyl phosphate of about 5 IU (g dry wt)-1, without recourse to membrane perturbation. This extra-cytoplasmic acid phosphatase was reversibly and competitively inhibited by orthophosphate (Ki = 2 mM at pH 5) but unaffected by L(+)-tartrate (in contradistinction to some of the cytoplasmic acid phosphatases of the same organism). Inactivation by NaF of the extra-cytoplasmic isoenzyme was irreversible and followed first order kinetics; sensitivity to NaF was decreased by the presence of citrate, phosphate or substrate. Neither Km (0.3 mM at pH 5) nor Vmax for this enzyme in acetate buffer was greatly affected by pH in the range 3-5 but the first order rate constant for inactivation by NaF was strongly dependent on pH (maximum at pH 3.5). Crude cell-free extracts of yeast cells had nine electrophoretically distinct acid phosphatase activity bands and, on the basis of the pattern of inhibitors, the extra-cytoplasmic activity was identified as Y-I, an isoenzyme that barely penetrates standard polyacrylamide gel electropherograms. Additional evidence for the assignment came from selective inactivation of this isoenzyme by short treatments of intact cells with NaF under conditions that did not allow penetration of the plasma membrane by the inhibitor and did not kill the cells.  相似文献   

16.
Incubation of neuroblastoma NIE 115 cells with veratrine leads to an apparent reduction in the number of muscarinic acetylcholine receptors assayed by [3H]scopolamine methyl chloride binding. No true down-regulation of the receptors occurs but a component of veratrine with muscarinic receptor affinity, which is not veratridine, enters the intracellular water space during the incubation period and competes with [3H]scopolamine methyl chloride for the muscarinic binding sites in subsequent ligand binding assays unless it is carefully washed away. Treatment of cells with the agonist carbamoylcholine does, however, lead to a true downregulation of muscarinic receptors.  相似文献   

17.
18.
19.
Sindbis virus (SV) is an alphavirus that causes encephalitis in mice and results in age-dependent mortality. The outcome is dependent on the virus strain. Residues at 55 and 172 in the E2 glycoprotein determine the neurovirulence for mice of different ages and the efficiency of replication in the nervous system and neuronal cells. To determine the effects of these two residues on the initial steps in replication, we studied viruses with a histidine or glutamine at E2 position 55 and a glycine or an arginine at position 172, E2[H55G172], E2[Q55G172], E2[H55R172], and E2[Q55R172]. The production of virus was detected earlier for viruses with a histidine at E2 position 55 in BHK-21 cells (4 to 6 versus 6 to 8 h) and for E2[H55G172] in N18 cells (6 versus 8 to 10 h). As shown previously, viruses with a glycine at E2 position 172 bound more efficiently to N18 cells and a histidine at E2 position 55 further improved binding only slightly. Viruses with E2[H55] exhibited more rapid internalization and degradation of viral proteins in both BHK-21 and N18 cells. Incubation of E2[H55G172] and E2[Q55G172] at various pHs and temperatures did not reveal differences in virion stability. These data suggest that the amino acids at E2 positions 172 and 55 affect both adsorption and penetration of SV and that these early steps in the replicative pathway contribute to increased neurovirulence.  相似文献   

20.
Ethylenediaminetetraacetic acid (EDTA), a chelating agent, was examined for the antibacterial activity against 15 species of bacteria by treating with a 10mM solution at pH adjusted to 5.0, 7.0 or 9.0. All bacterial species tested were classified into three groups; tentatively named the pH5 EDTA-sensitive group comprising Vibrio cholerae and Staphylococcus aureus, the pH9 EDTA-sensitive group comprising Escherichia coli and Pseudomonas aeruginosa and the EDTA-nonsensitive group comprising Proteus mirabilis. The EDTA-sensitivity grouping may be used as a tool for preferential decontamination of certain bacteria in live edible fishes, although further experiments are needed to characterize more strains and also species of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号