共查询到20条相似文献,搜索用时 0 毫秒
1.
Robert H. Eaglen 《International journal of primatology》1983,4(3):249-273
In spite of the increasing popularity of cladistic methods in studies of primate systematics, few authors have investigated
the effects of parallel evolution when such methods are applied to empirical data. To counter the effects of parallelism,
cladistic techniques rely on the principle of evolutionary parsimony. When parsimony procedures are used to reconstruct the
phylogeny of the Lemuridae, nine highly parsimonious phylogenies can be deduced. Further choice among these competing hypotheses
of relationship is determined by the extent to which one embraces the parsimony principle. The phylogeny obtained by the most
rigorous adherence to the parsimony principle is one which is wholly consistent with traditional evolutionary classifications
of the Lemuridae. Moderate levels of parallelism can lead to the generation of several plausible, alternative phylogenetic
hypotheses; less than 25% of the characters analyzed here need have evolved in parallel, yet they are largely responsible
for the ambiguity of the nine different lemurid phylogenies. This suggests that phylogeny reconstructions based entirely on
cladistic methods do not provide a suitable basis for the construction of classifications for groups such as the order Primates,
where the degree of parallelism is likely to be quite high. 相似文献
2.
Harold N. Bryant 《Biology & philosophy》1995,10(2):197-217
A parallel exists between the threefold parallelism of Agassiz and Haeckel and the three valid methods of polarity determination in phylogenetic systematics. The structural gradation among taxa within a linear hierarchy, ontogenetic recapitulation, and geological succession of the threefold parallelism resemble outgroup comparison, the ontogenetic method, and the paleontological method, respectively, which are methods of polarity determination in phylogenetic systematics. The parallel involves expected congruence among similar components of the distribution of character states among organisms. The threefold parallelism is a manifestation of a world view based on linear hierarchies, whereas polarity determination is part of the methodology of phylogenetic systematics which assumes that organisms are grouped into a nested hierarchy. The threefold parallelism facilitated the ranking of previously established taxa into linear hierarchies consisting mostly of paraphyletic groups. In contrast, methods of polarity determination identify apomorphies that determine and diagnose monophyletic taxa (clades) in the nested genealogical hierarchy. Taxa in linear hierarchies are defined by sets of character states, whereas clades are defined by common ancestry. Although the threefold parallelism was ostensibly abandoned with the rejection of Haeckel's biogenetic law, some of its components continue to facilitate the progressive scenarios that are common in evolutionary thought. Although a general view of progression in organismal history may be invalid, the progressive or directional sequence of character state changes that results in the characterization of a particular clade has considerable heuristic value. Agassiz's ostensibly nested hierarchy and other pre-Darwinian classifications do not provide support for the view that the natural system can be discovered without recourse to the principle of common descent. 相似文献
3.
Phylogeography has become a powerful approach for elucidating contemporary geographical patterns of evolutionary subdivision within species and species complexes. A recent extension of this approach is the comparison of phylogeographic patterns of multiple co-distributed taxonomic groups, or 'comparative phylogeography.' Recent comparative phylogeographic studies have revealed pervasive and previously unrecognized biogeographic patterns which suggest that vicariance has played a more important role in the historical development of modern biotic assemblages than current taxonomy would indicate. Despite the utility of comparative phylogeography for uncovering such 'cryptic vicariance', this approach has yet to be embraced by some researchers as a valuable complement to other approaches to historical biogeography. We address here some of the common misconceptions surrounding comparative phylogeography, provide an example of this approach based on the boreal mammal fauna of North America, and argue that together with other approaches, comparative phylogeography can contribute importantly to our understanding of the relationship between earth history and biotic diversification. 相似文献
4.
5.
基于对世界柽麦蛾属昆虫外部形态和外生殖器的形态学研究,选择了66个性状演变系列,通过PAUP*4b10软件对柽麦蛾属51种昆虫进行了支序系统学分析。分析结果认为heluanensis种团并不是一个单系群,柽麦蛾属被重新作了7个种团的划分。在支序系统学分析的基础上,柽麦蛾属昆虫的14个地理分布区域等级关系被重建,显示出古地中海地区复杂的历史,同时说明在该属分布格局中扩散事件客观存在。 相似文献
6.
7.
《Palaeoworld》2020,29(4):761-768
Newly discovered Miocene hyaenid specimens, recently collected from the Siwalik Group, are described and discussed. A careful comparison with the known material reveals that these specimens belong to the early hyaenid species Thalassictis cf. T. proava, Ictitherine indet. and Lepthyaena sivalensis. The stratigraphic range of T. proava extended up to the Dhok Pathan Formation (Middle Miocene to Early Pliocene). The stratigraphic range of T. proava comprises the Middle to Late Miocene, with the youngest record in Hasnot, Potwar Plateau in the Siwalik Group. The material is of great interest because Siwalik carnivoran material is rare. 相似文献
8.
Aim We analysed the distributional patterns of six terrestrial vertebrate taxa from the Oaxacan Highlands (Sierra Mazateca, Nudo de Zempoaltépetl and Sierra de Juárez) through a cladistic biogeographical approach, in order to test their naturalness as a biotic unit.
Location The Oaxacan Highlands, Mexico.
Methods The cladistic biogeographical analysis was based on the area cladograms of the Pseudoeurycea bellii species group (Amphibia: Plethodontidae), the genus Chlorospingus (Aves: Thraupidae), the genera Microtus , Reithrodontomys and Habromys , and the Peromyscus aztecus species group (Mammalia: Rodentia). We obtained paralogy-free subtrees, from which the components were coded in a data matrix for parsimony analysis. The data matrix was analysed with N ona through W in C lada .
Results The parsimony analysis resulted in a single general area cladogram in which areas were fragmented following the sequence Sierra Madre Occidental, Trans-Mexican Volcanic Belt, Chiapas, Sierra Madre Oriental + Sierra Mazateca, Sierra Madre del Sur, Nudo de Zempoaltépetl and Sierra de Juárez.
Main conclusions The general area cladogram shows that the Oaxacan Highlands do not constitute a natural unit. The Sierra Mazateca is the sister area to the Sierra Madre Oriental, whereas the Nudo de Zempoaltépetl and the Sierra de Juárez are closely related to the Sierra Madre del Sur. The events that might have caused these patterns include cycles of expansion and contraction of mountain pinyon, juniper and oak woodlands during the Pleistocene. 相似文献
Location The Oaxacan Highlands, Mexico.
Methods The cladistic biogeographical analysis was based on the area cladograms of the Pseudoeurycea bellii species group (Amphibia: Plethodontidae), the genus Chlorospingus (Aves: Thraupidae), the genera Microtus , Reithrodontomys and Habromys , and the Peromyscus aztecus species group (Mammalia: Rodentia). We obtained paralogy-free subtrees, from which the components were coded in a data matrix for parsimony analysis. The data matrix was analysed with N ona through W in C lada .
Results The parsimony analysis resulted in a single general area cladogram in which areas were fragmented following the sequence Sierra Madre Occidental, Trans-Mexican Volcanic Belt, Chiapas, Sierra Madre Oriental + Sierra Mazateca, Sierra Madre del Sur, Nudo de Zempoaltépetl and Sierra de Juárez.
Main conclusions The general area cladogram shows that the Oaxacan Highlands do not constitute a natural unit. The Sierra Mazateca is the sister area to the Sierra Madre Oriental, whereas the Nudo de Zempoaltépetl and the Sierra de Juárez are closely related to the Sierra Madre del Sur. The events that might have caused these patterns include cycles of expansion and contraction of mountain pinyon, juniper and oak woodlands during the Pleistocene. 相似文献
9.
The Pterogeniidae, a family of beetles from Indoaustralia, are revised. They comprise five genera and 24 species. Three genera and 17 species are described as new and one species is synonymized. It is shown that the male and particularly the female genitalia provide useful means for species definition. The phylogenetic relationships are discussed based on a cladistic analysis of 23 morphological characters using PAUP. The analysis resulted in a single cladogram with following grouping: ( Kryptogenius + ( Tychogenius + ( Katagenius + ( Plerogenins + Histanocerus )))). For rooting the cladogram and polarizing the characters, Sivacrypticus indicus (Archeocrypticidae) was used as an outgroup. The majority of the species is restricted to insular tropical Asia and Oceania but four of them extend their range onto the Malayan Peninsula. Another four species are known only from continental Asia, i.e. two species from South India and one each from Malayan Peninsula and Vietnam respectively. Species of Kryptogenius, Pterogenius, Katagenius and Tychogenius are highly endemic and could therefore potentially be useful for analysing areas of endemism. For this, however, the cladistic relationships should be resolved at species level. Species of Histanocerus are more widely distributed but none is found on both sides of Wallace's line. 相似文献
10.
Marcin Jan Kamiński 《Zoological Journal of the Linnean Society》2015,175(1):73-106
Owing to the reinterpretation of its morphological synapomorphies, the taxonomic composition of the Ectateus generic group had been ambiguous. The present study scrutinized all existing taxonomic concepts of the group based on a cladistic analysis of the adult morphology of all of the Afrotropical platynotoid Platynotina genera. The phylogenetic relationships were reconstructed using parsimony and Bayesian inference. The results show that all previous taxonomic concepts of the Ectateus generic group concerned paraphyletic entities. The cladistic analysis revealed the following synapomorphies for the taxon: (1) presence of basal indentations of the pronotal disc, (2) ratio of prothorax width to its maximal height > 6.0, and (3) ratio of maximal height of the prothorax to total height < 0.3. Moreover, phylogenetic studies revealed the existence of the Upembarus generic group, a sister‐taxon group to the Ectateus generic group, within the Afrotropical platynotoid Platynotina. Autapomorphic and synapomorphic character mapping show that several taxonomic and nomenclatural changes are needed to consider the particular generic‐level entities traditionally assigned to Afrotropical platynotoid Platynotina as monophyletic lineages. The following taxonomic and nomenclatural adjustments are made in this paper: P teroselinus gen. nov. is erected to accommodate a single species that was previously assigned to Zidalus: Pteroselinus insularis comb. nov. Additionally, the following synonymies are proposed: Anchophthalmops (= Platykochius syn. nov. ), Angolositus (= Aberlencus syn. nov. , = Platymedvedevia syn. nov. ), Glyptopteryx (= Microselinus syn. nov. , = Quadrideres syn. nov. , = Synquadrideres syn. nov. ). In addition, Kochogaster is lowered in rank and is treated as one of the subgenera of Anchophthalmus. Moreover, Pseudoselinus is treated as a subgenus of Upembarus. An identification key to all Afrotropical platynotoid Platynotina genera and subgenera is presented. Zoogeographical analyses revealed the following dispersal barriers for the Ectateus generic group: (1) the Sahara (northern barrier); (2) the dry ecosystems of Botswana, Namibia, and South Africa (southern barrier); and (3) the Congolian rainforests (internal distributional gap). The ancestor of the taxon probably originated in East African ecoregions that predominantly contained wattletrees (acacias) and Commiphora Jacq. Moreover, past climate changes seem to have had a great impact on the observed generic distribution. © 2015 The Linnean Society of London 相似文献
11.
Carlos David de Santana Richard P. Vari 《Zoological Journal of the Linnean Society》2013,168(3):564-596
12.
NICO M. FRANZ 《Zoological Journal of the Linnean Society》2012,164(3):510-557
The monophyly of the Neotropical entimine weevil genus Exophthalmus Schoenherr, 1823 (Curculionidae: Entiminae: Eustylini Lacordaire) is reassessed. Exophthalmus presently includes more than 80 species, approximately half of which are restricted to either the Caribbean archipelago or the continental Neotropics. The taxonomic composition and position of Exophthalmus have been subject to longstanding disagreements; in particular, authors have questioned the relationship of Exophthalmus to other Caribbean genera such as Diaprepes Schoenherr, 1834 (Eustylini) and Lachnopus Schoenherr, 1840 (Geonemini Gistel), as well as to the speciose Central and South American genera Compsus Schoenherr, 1823, Eustylus Schoenherr, 1842, and Exorides Pascoe, 1881 (all Eustylini), among others. The present study scrutinizes these traditional perspectives, based on a cladistic analysis of 143 adult morphological characters and 90 species, representing 30 genera and seven tribes of Neotropical entimine weevils. The character matrix yielded eight most‐parsimonious cladograms (length = 239 steps; consistency index = 66; retention index = 91), with mixed clade support that remains particularly wanting for some of the deeper in‐group divergences. The strict consensus supports the existence of a paraphyletic Geonemini ‘grade’ that includes Lachnopus and related Caribbean genera such as Apotomoderes Dejean, 1834, followed by a monophyletic Eustylini in‐group clade. Within the latter, a monophyletic South American Eustylini clade – including Compsus, Eustylus, Exorides, and related genera – is sister to a major clade that contains a ‘grade’ of heterogeneous and often misclassified Caribbean members of the Eustylini, Geonemini (Tetrabothynus Labram & Imhoff, 1852 and Tropirhinus Schoenherr, 1823), and Tanymecini Lacordaire (Pachnaeus Schoenherr, 1826), as well as two major clades: one with the majority of Central American Exophthalmus species, and the other with most Caribbean members of Exophthalmus. The Central American Exophthalmus clade is paraphyletic with respect to Chauliopleurus Champion, 1911 (Geonemini) and Rhinospathe Chevrolat, 1878 (Phyllobiini Schoenherr). The Caribbean clade, in turn, contains two subclades: i.e. (1) the Greater Antillean Exophthalmus s.s. clade, including the type species Exophthalmus quadrivittatus (Olivier, 1807); and (2) the primarily Lesser Antillean Diaprepes. The latter genus is therefore nested within Central American and Caribbean species of a highly paraphyletic Exophthalmus, yet may be rendered monophyletic if several Lesser Antillean Exophthalmus species are (re‐)assigned to Diaprepes. The results thus provide a suitable basis for a revision of all Exophthalmus species, and furthermore suggest that historical biographic factors, including colonization via temporary continental Neotropics‐to‐Caribbean land connections, were important in the evolution of major eustyline lineages. Based on these preliminary insights, the following taxonomic and nomenclatural adjustments are made. Compsoricus gen. nov. is erected to accommodate two Puerto Rican species erroneously assigned to Compsus: i.e. the herein designated type species Compsoricus maricao comb. nov. and Compsoricus luquillo comb. nov. Eustylus dentipes comb. nov. is transferred from Compsus. Diaprepes marginicollis Chevrolat, 1880 is reinstated from synonymy under Exophthalmus. Lastly, the following five transfers are proposed: (1) Chauliopleurus Champion, 1911, from Geonemini to Eustylini; (2) Tetrabothynus Labram & Imhoff, 1852, from Geonemini to Eustylini; (3) Tropirhinus Schoenherr, 1823, from Geonemini to Eustylini; (4) Rhinospathe Chevrolat, 1878, from Phyllobiini to Eustylini; and (5) Pachnaeus Schoenherr, 1826, from Tanymecini to Eustylini. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 510–557. 相似文献
13.
The genus Durvillaea currently has four recognized species found along many exposed, rocky coastlines of the temperate to sub-Antarctic regions in the Southern Hemisphere. We propose that the current species distributions are related primarily to vicariance events and subsequent speciation associated with the breakup of Gondwana between 40 and 100 Ma. From an ancestral species, a stipitate species developed in the Tasman basin, with separation and speciation resulting in the D. potatorum/ D. willana complex in southeastern Australia and New Zealand. A second line of evolution led to D. chathamensis and D. antarctica characterized by a honeycombed medulla. The extensive distribution of D. antarctica throughout the Southern Hemisphere is related to both vicariance and dispersal events. The status of D. chathamensis as a species distinct from D. antarctica is questioned. The affinities of an as yet undescribed taxon from the Antipodes Islands are thought to be with the D. potatorum complex but require further study before they can be defined more precisely . 相似文献
14.
Phylogeny of the butterfly genera Araschnia, Mynes, Symbrenthia and Brensymthia (Lepidoptera: Nymphalidae: Nymphalini) is reconstructed, based on 140 morphological and ecological characters. The resulting tree shows that Araschnia is a sister group of the clade including Symbrenthia, Mynes and Brensymthia (Symbrenthia is paraphyletic in the respect of remaining genera; Symbrenthia hippalus is a derived species of Mynes). The species-level relationships within Araschnia are robustly supported as follows: (A. davidis (prorsoides ((zhangi doris) (dohertyi (levana burejana))))). Analysis of the wing colour-pattern characters linked with the seasonal polyphenism in the Araschnia species suggests that the black and white coloration of the long-day (summer) generation is apomorphic. Biogeographically, the origin of polyphenism in Araschnia predates the dispersal of some Araschnia species towards the Palaearctic temperate zone, and the ecological cause of the polyphenism itself is then probably not linked with thermoregulation. The possible mimetic/cryptic scenarios for the origin of Araschnia polyphenism are discussed. 相似文献
15.
Analysis of a morphological dataset containing 152 parsimony‐informative characters yielded the first phylogenetic reconstruction spanning the South American characiform family Anostomidae. The reconstruction included 46 ingroup species representing all anostomid genera and subgenera. Outgroup comparisons included members of the sister group to the Anostomidae (the Chilodontidae) as well as members of the families Curimatidae, Characidae, Citharinidae, Distichodontidae, Hemiodontidae, Parodontidae and Prochilodontidae. The results supported a clade containing Anostomus, Gnathodolus, Pseudanos, Sartor and Synaptolaemus (the subfamily Anostominae sensu Winterbottom) albeit with a somewhat different set of relationships among the species within these genera. Anostomus as previously recognized was found to be paraphyletic and is split herein into two monophyletic components, a restricted Anostomus and the new genus Petulanos gen. nov. , described herein. Laemolyta appeared as sister to the clade containing Anostomus, Gnathodolus, Petulanos, Pseudanos, Sartor and Synaptolaemus. Rhytiodus and Schizodon together formed a well‐supported clade that was, in turn, sister to the clade containing Anostomus, Gnathodolus, Laemolyta, Petulanos, Pseudanos, Sartor and Synaptolaemus. Anostomoides was sister to the clade formed by these nine genera. Leporinus as currently defined was not found to be monophyletic, although certain clades within that genus were supported, including the species with subterminal mouths in the former subgenus Hypomasticus which we recognize herein as a genus. Abramites nested in Leporinus, and Leporellus was found to be the most basal anostomid genus. The presence of cis‐ and trans‐Andean species in Abramites, Leporellus, Leporinus and Schizodon, all relatively basal genera, suggests that much of the diversification of anostomid species pre‐dates the uplift of the Andean Cordilleras circa 11.8 million years ago. Several important morphological shifts in anostomid evolution are illustrated and discussed, including instances of convergence and reversal. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 70–210. 相似文献
16.
Four species of Sunaristes (Canuellidae) are known to live in association with hermit crabs and exhibit a degree of host specificity. Although hermit crabs are common in many parts of the world, Sunaristes is notably absent from waters of the New World. The phylogeny of Sunaristes is here examined through a cladistic analysis. The reconstructed phologeny indicates that S. inaequalis and S. japonicus form a sister group, and its closest relative is S. tranteri. The sister taxon of this 3-species clade is S. paquri. It is assumed that Sunaristes evolved in the Paleocene on the north shore of the Tethys seaway. The constructed cladogram forms the basis for the analysis of vicariant events that led to the speciation and development of the present pattern of distribution of Sunaristes. 相似文献
17.
LUIGI RACHELI TOMMASO RACHELI 《Biological journal of the Linnean Society. Linnean Society of London》2004,82(3):345-357
Diversifications within a biota are due to several factors. Although some of these are untestable with current analytical methods, hierarchical congruence obtained with different cladistic methods and based on independent taxa are undoubtedly important. In the recent past, most hypotheses of historical biogeography (e.g. refugial, riverine, disturbance, vicariance) were tested on the Amazonian biota, selecting a number of diverse organisms such as plants, anurans, lizards, butterflies, birds and monkeys. In this study we used parsimony analysis of endemicity to infer historical relationships among 16 interfluvial areas in the Amazonian lowlands based on raw distributions of 114 Papilioninae (Lepidoptera). The analysis yielded two most parsimonious trees of area relationships. One tree was characterized by two main clusters of areas which showed a separation of Guyanan + south-east Amazonian interfluvial areas from western Amazonian interfluvial areas. The second tree showed the Guyanan interfluvial areas basal to a cluster which included all the other interfluvial areas. This latter cluster was subdivided into two main groups of areas separating the south-east Amazonian and the western Amazonian interfluvial areas. This result is discussed in the light of previous hypotheses obtained with the same method using some vertebrate taxa in the Amazonian lowlands. Likewise, comparisons with other hypotheses on lineages of birds, mammals and butterflies obtained applying cladistic biogeographical methods are made. The two alternative vicariant patterns presented for papilionid butterflies are strictly congruent with those for birds. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 345–357. 相似文献
18.
19.
20.
RICHARD M. BATEMAN PETER M. HOLLINGSWORTH JILLIAN PRESTON LUO YI-BO ALEC M. PRIDGEON MARK W. CHASE 《Botanical journal of the Linnean Society. Linnean Society of London》2003,142(1):1-40
Internal transcribed spacer (ITS nuclear rDNA) data have been obtained from 190 terrestrial orchid species, encompassing all genera and the great majority of the widely recognized species of Orchidinae, a heterogeneous selection of species of Habenariinae, and single species of Satyriinae and Disinae (the latter serving as outgroup). The resulting parsimony‐based phylogeny reveals 12 well‐resolved clades within the Orchidinae, based on Anacamptis s.l., Serapias, Ophrys, Steveniella–Himantoglossum s.l. (including ‘Comperia’ and ‘Barlia’, most species being 2n = 36), Neotinea s.l., Traunsteinera–Chamorchis, Orchis s.s., Pseudorchis–Amerorchis–Galearis–Neolindleya–Platanthera s.l. (most 2n = 42), Dactylorhiza s.l., Gymnadenia s.l. (most 2n = 40, 80), Ponerorchis s.l.–Hemipilia s.l.–Amitostigma–Neottianthe, and Brachycorythis (most 2n = 42). Relationships are less clearly resolved among these 12 clades, as are those within Habenariinae; the subtribe appears either weakly supported as monophyletic or as paraphyletic under maximum parsimony, and the species‐rich genus Habenaria is clearly highly polyphyletic. The triphyly of Orchis as previously delimited is confirmed, and the improved sampling allows further generic transfers to Anacamptis s.l. and Neotinea s.l. In addition, justifications are given for: (1) establishing Steveniella as the basally divergent member of an appreciably expanded Himantoglossum that incorporates the former genera ‘Barlia’ and ‘Comperia’, (2) reuniting ‘Piperia’ with a broadly defined Platanthera as section Piperia, necessitating ten new combinations, (3) broadening Ponerorchis to include Chusua, and Hemipilia to include single ‘orphan’ species of Ponerorchis and Habenaria, and (4) recognizing ‘Gymnadenia’camtschatica as the monotypic Neolindleya camtschatica within the Pseudorchis~Platanthera clade. Few further generic transfers are likely in Orchidinae s.s., but they are anticipated among habenariid genera, on acquisition of additional morphological and molecular evidence; one probable outcome is expansion of Herminium. Species‐level relationships are also satisfactorily resolved within most of the major clades of Orchidinae, with the notable exceptions of Serapias, the derived sections of Ophrys, Himantoglossum s.s., some sections within Dactylorhiza, the former genus ‘Nigritella’ (now tentatively placed within Gymnadenia s.l.), Hemipilia s.l., and possibly Ponerorchis s.s. Relationships among the 12 major clades broadly accord with bona fide records of intergeneric hybridization. Current evidence supports the recently recognized 2n = 36 clade; it also indicates a 2n = 40 clade that is further diagnosed by digitate root‐tubers, and is derived relative to the recently recognized clade of exclusively Asian genera (Ponerorchis s.l.–Hemipilia s.l.–Amitostigma–Neottianthe). This in turn appears derived relative to the Afro‐Asiatic Brachycorythis group; together, these two clades identify the plesiomorphic chromosome number as 2n = 42. If the African genus Stenogolottis is correctly placed as basally divergent within a monophyletic Habenariinae, the tribe Orchideae and subtribes Orchidinae and Habenariinae could all have originated in Africa, though in contrast the Asiatic focus of the basally divergent members of most major clades of Orchidinae suggests an Asiatic radiation of the subtribe. Morphological characters informally ‘mapped’ across the molecular phylogeny and showing appreciable levels of homoplasy include floral and vegetative pigmentation, flower shape, leaf posture, gynostemium features, and various pollinator attractants. Qualitative comparison of, and reciprocal illumination between, degrees of sequence and morphological divergence suggests a nested set of radiations of progressively decreasing phenotypic magnitude. Brief scenarios, both adaptive and non‐adaptive, are outlined for specific evolutionary transitions. Recommendations are made for further species sampling, concentrating on Asian Orchidinae (together with the Afro‐Asiatic Brachycorythis group) and both Asian and Southern Hemisphere Habenariinae, and adding plastid sequence data. Taxonomic changes listed are: Anacamptis robusta (T.Stephenson) R.M.Bateman, comb. nov. , A. fragrans (Pollini) R.M.Bateman, comb. nov. , A. picta (Loiseleur) R.M.Bateman, comb. nov. , Neotinea commutata (Todari) R.M.Bateman, comb. nov. , N. conica (Willdenow) R.M.Bateman, comb. nov. , Platanthera elegans Lindley ssp. maritima (Rydberg) R.M.Bateman, comb. nov. , P. elegans Lindley ssp. decurtata (R.Morgan & Glicenstein) R.M.Bateman, comb. nov. , P. elongata (Rydberg) R.M.Bateman, comb. nov. , P. michaelii (Greene) R.M.Bateman, comb. nov. , P. leptopetala (Rydberg) R.M.Bateman, comb. nov. , P. transversa (Suksdorf) R.M.Bateman, comb. nov. , P. cooperi (S.Watson) R.M.Bateman, comb. nov. , P. colemanii (R.Morgan & Glicenstein) R.M.Bateman, comb. nov. , P. candida (R.Morgan & Ackerman) R.M.Bateman, comb. nov. and P. yadonii (R.Morgan & Ackerman) R.M.Bateman, comb. nov. © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 142 , 1–40. 相似文献