首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Oxidative stress by phenazine methosulfate stimulated proteolysis in erythrocytes. 2. Gamma-irradiation of erythrocytes in the range of 50-1000 Gy also resulted in the induction of proteolysis. 3. Though it has been suggested that hyperthermia imposes an oxidative stress on a cell, hyperthermic exposure of erythrocytes (30 min, 39-49 degrees C) did not stimulate proteolysis during subsequent incubation of whole cells or hemolysates. 4. Proteolytic degradation of spectrin was accelerated during incubation of membranes isolated from cells heated above 45 degrees C but this effect seems to be due rather to thermal denaturation of spectrin than to oxidative modification of cellular proteins by hyperthermia.  相似文献   

2.
Treatment of adriamycin-loaded erythrocytes from B6D2F1 mice with 0.1% glutaraldehyde produced the following effects: a considerable decrease in the in vitro leakage of the unmodified drug and a selective liver (and, to a lesser extent, lung) uptake of the encapsulated drug (70% of the injected dose) compared to drug leakage from, and tissue distribution of, carrier erythrocytes not treated with glutaraldehyde. The liver vascular bed was not saturated by five daily intravenous injections of 20 microliters of glutaraldehyde-treated erythrocytes, which allows a total dosage of 200 micrograms of the drug (half the LD50 value) to be administered. No appreciable liver damage results from extensive and prolonged uptake of glutaraldehyde-treated carrier erythrocytes. Entrapment of adriamycin within erythrocytes along with glutaraldehyde treatment of the carrier cells seems to be a promising therapeutic strategy against liver (and lung) tumors.  相似文献   

3.
Wilson disease is caused by accumulation of Cu(2+) in cells, which results in liver cirrhosis and, occasionally, anemia. Here, we show that Cu(2+) triggers hepatocyte apoptosis through activation of acid sphingomyelinase (Asm) and release of ceramide. Genetic deficiency or pharmacological inhibition of Asm prevented Cu(2+)-induced hepatocyte apoptosis and protected rats, genetically prone to develop Wilson disease, from acute hepatocyte death, liver failure and early death. Cu(2+) induced the secretion of activated Asm from leukocytes, leading to ceramide release in and phosphatidylserine exposure on erythrocytes, events also prevented by inhibition of Asm. Phosphatidylserine exposure resulted in immediate clearance of affected erythrocytes from the blood in mice. Accordingly, individuals with Wilson disease showed elevated plasma levels of Asm, and displayed a constitutive increase of ceramide- and phosphatidylserine-positive erythrocytes. Our data suggest a previously unidentified mechanism for liver cirrhosis and anemia in Wilson disease.  相似文献   

4.
Ascorbic acid (AA) is an important cytoplasmic antioxidant that mice synthesize in the liver, the intracellular levels of which decrease in an oxidative stress situation such as endotoxic shock. The present work deals with the changes in AA levels, that modulate the immune function, in the two main immune cells, namely macrophages and lymphocytes, from female BALB/c mice suffering endotoxic shock caused by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) (100 mg/kg). The intake by cells of this antioxidant present in vitro at different concentrations was also studied. The animals show an oxidative stress, standardized in previous studies, that causes mortality at 30 h after LPS injection. The cells were obtained from the peritoneum at 2, 4, 12 and 24 h after LPS or PBS (control) injections and were incubated without or with AA at 0.01, 0.1 and 1 mM for 10, 30, 60, 120 or 180 min. The hepatic AA levels were also studied at 0, 2, 4, 12 and 24 h after LPS injection. The peritoneal cells obtained from animals injected with LPS showed increased AA levels in relation to the control cells at all times after LPS injection, with maximal effect at 12h. The AA levels decreased after this time, in agreement with changes in the AA hepatic levels. The increase was due to the AA of lymphocytes since macrophages showed a decrease in AA at different times after LPS injection. Both cells showed an increase in the intracellular levels of AA when this antioxidant was added in vitro. This takes place mainly at 30-60 min of incubation in cells from controls and at 10 min in cells from treated mice 12-24 h after LPS injection. The incorporation decreased at these times of endotoxic shock, a few hours before death. In all cases AA levels were higher in lymphocytes than in macrophages, and 1 mM was the most effective concentration. These results suggest that the immune cells need appropriate levels of antioxidants, such as AA, under oxidative stress conditions, and that while lymphocytes take and accumulate AA, macrophages use it.  相似文献   

5.
Exposure of allogenic erythrocytes to papain induced their immunosuppressing properties within relatively narrow ranges of the incubation medium temperature (42 but not 37 or 40 degrees C) and the papain concentration (10 but not 2 or 50 micrograms/ml). Markedly pronounced immunosuppressing properties were acquired by the erythrocyte light fraction after heating and exposure to papain. The supernatant layer of adhesive spleen cells incubated in the presence of erythrocytes heat treated and exposed to papain suppressed development of the humoral immune response and DTH during the allogenic transfer and accelerated and increased excretion of the antigen specific immunosuppressing factor by the nonadhesive spleen cells of hyperimmunized sheep red blood cells.  相似文献   

6.
The tricothecene mycotoxin, T-2 toxin, was encapsulated in bovine erythrocytes for in vivo delivery of T-2 toxin to macrophages. Intraperitoneal injection of bovine carrier erythrocytes (5 X 10(8) cells) containing T-2 toxin saturated mouse liver uptake of erythrocytes by 6 h postinjection. At 24 h postinjection, 20% of the injected carrier cells containing toxin were localized in the liver of mice. Saturation of the liver uptake of bovine carrier cells was independent of encapsulated or free T-2 toxin. A dose of T-2 toxin sufficient to inhibit 50% of the macrophage protein synthesis was targeted to the liver via the carrier erythrocytes. A methodology for delivery of highly toxic molecules to liver macrophages is described.  相似文献   

7.
In this study, the relative toxicity of native gold-silica nanoshells (NS) has been compared to nanoshells modified with poly(ethylene glycol)-thiol (PEG-SH) and a Raman-active PEG, p-mercaptoaniline-poly(ethylene glycol) (pMA-PEG), in mouse alveolar macrophage cell cultures (RAW 264.7). The results from toxicity profiling using an MTT assay demonstrate that cell viability post-particle exposure is a function of three factors: nanoshell concentration, surface functionalization, and incubation time. By minimizing particle concentrations and incubation times, cell cultures are able to recover within 24 h of nanoshell removal, indicative of nanoshells having more of a cytostatic versus cytotoxic effect on macrophage cells. The mechanism of the cytostatic effect has been investigated by imaging the presence of reactive oxygen species (ROS) using a fluorescence assay kit (Image-iT? LIVE) after the introduction of NS to the cell cultures. Elevated ROS signals are seen in the cells containing higher concentration of NS, and indicate that the major reason of toxicity may due to the oxidative stress caused by excess NS particles. Raman imaging experiments with pMA-PEG coated nanoshells showed that cells exposed for even short exposure times (~2 h) retained those particles up to 24 h after exposure, while migration experiments suggest that surviving cells retain their nanoshells and may reallocate them to progeny cells upon cell division.  相似文献   

8.

Background

Chronic lead (Pb2 +) exposure leads to the reduced lifespan of erythrocytes. Oxidative stress and K+ loss accelerate Fas translocation into lipid raft microdomains inducing Fas mediated death signaling in these erythrocytes. Pathophysiological-based therapeutic strategies to combat against erythrocyte death were evaluated using garlic-derived organosulfur compounds like diallyl disulfide (DADS), S allyl cysteine (SAC) and imidazole based Gardos channel inhibitor clotrimazole (CLT).

Methods

Morphological alterations in erythrocytes were evaluated using scanning electron microscopy. Events associated with erythrocyte death were evaluated using radio labeled probes, flow cytometry and activity gel assay. Mass spectrometry was used for detection of GSH-4-hydroxy-trans-2-nonenal (HNE) adducts. Fas redistribution into the lipid rafts was studied using immunoblotting technique and confocal microscopy.

Results

Combination of SAC and CLT was better than DADS and CLT combination and monotherapy with these agents in prolonging the survival of erythrocytes during chronic Pb2 + exposure. Combination therapy with SAC and CLT prevented redistribution of Fas into the lipid rafts of the plasma membrane and downregulated Fas-dependent death events in erythrocytes of mice exposed to Pb2 +.

Conclusion and general significance

Ceramide generation was a critical component of Fas receptor-induced apoptosis, since inhibition of acid sphingomyelinase (aSMase) interfered with Fas-induced apoptosis during Pb2 + exposure. Combination therapy with SAC and CLT downregulated apoptotic events in erythrocytes by antagonizing oxidative stress and Gardos channel that led to suppression of ceramide-initiated Fas aggregation in lipid rafts. Hence, combination therapy with SAC and CLT may be a potential therapeutic option for enhancing the lifespan of erythrocytes during Pb2 + toxicity.  相似文献   

9.
Heat stress is one of a wide variety of factors causing liver injury, a small heat shock protein (HSP), HSP32, is induced by heat stress in the liver. But the biological function of HSP32 in this injury is unclear. To investigate the underlying role of HSP32, RT-PCR, immunocytochemical staining and ELISA were applied to confirm the expression of HSP32. And the underlying mechanism in the pathogenesis of hepatic dysfunction following hyperthermic challenge and the possible involvement of oxidative stress to induce oxidative deterioration of liver functions in developing mice were investigated in this study. Caspase-3mRNA expression and caspase-3 activity of heated liver were also analysed. The results showed that liver injury caused by chronic heat stress(39 °C, 1.5 h/day for 6 weeks) was reversible, caspase-3mRNA expression and caspase-3 activity of heat treated mice were increased after the first three weeks of heat exposure (P<0.05) and high expression levels of HSP32 were observed throughout the duration of experiment (P<0.01). A strong correlation exists between heat-induced liver injury and the induction of HSP32, which suggested that the reversibility of liver injury is involved in the induction of HSP32 in the hepatic cells under continuing heat stress.  相似文献   

10.
Over three decades ago, Parker and Snow (Am J Physiol 223: 888-893, 1972) demonstrated that canine erythrocytes undergo an increase in cation permeability when incubated with extracellular ATP. In this study we examined the expression and function of the channel/pore-forming P2X(7) receptor on canine erythrocytes. P2X(7) receptors were detected on canine erythrocytes by immunocytochemistry and immunoblotting. Extracellular ATP induced (86)Rb(+) (K(+)) efflux from canine erythrocytes that was 20 times greater than that from human erythrocytes. The P2X(7) agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-trisphosphate (BzATP) was more potent than ATP, and both stimulated (86)Rb(+) efflux from erythrocytes in a dose-dependent fashion with EC(50) values of approximately 7 and approximately 309 microM, respectively. 2-Methylthioadenosine 5'-triphosphate and adenosine 5'-O-(3-thiotriphosphate) induced a smaller (86)Rb(+) efflux from erythrocytes, whereas ADP, AMP, UTP, or adenosine had no effect. ATP-induced (86)Rb(+) efflux from erythrocytes was inhibited by oxidized ATP, KN-62, and Brilliant blue G, known P2X(7) antagonists. ATP also induced uptake of choline(+) into canine erythrocytes that was 60 times greater than that into human erythrocytes. Overnight incubation of canine erythrocytes with ATP and BzATP induced phosphatidylserine exposure in >80% of cells and caused up to 20% hemolysis. In contrast, <30% of human erythrocytes showed phosphatidylserine exposure after overnight incubation with ATP and BzATP, and hemolysis was negligible. Flow cytometric measurements of ATP-induced ethidium(+) uptake showed that P2X(7) function was three times lower in canine monocytes than in human monocytes. These data show that the massive cation permeability increase induced by extracellular ATP in canine erythrocytes results from activation and opening of the P2X(7) receptor channel/pore.  相似文献   

11.
The mutagenic and clastogenic activity of tobacco smoke   总被引:3,自引:0,他引:3  
Employing the Salmonella/microsome mutagenicity assay it was established that the mutagenic effect of tobacco smoke (TS) (240 cm3 in a 16-l glass chamber, at 1 min or 5 min exposure time) in S. typhimurium TA98 depended on the type of S9 mix used. Addition of S9 mix obtained from the liver of 3-methylcholanthrene- or Aroclor-1254-pretreated rats but not from the liver of phenobarbital-pretreated or untreated rats was required to demonstrate the mutagenic activity of TS. One might suggest that polycyclic aromatic hydrocarbons were involved in TS-induced mutagenesis in S. typhimurium TA98. In addition, treatment of BDF1 mice with TS (600 cm3 TS in a 14-l glass chamber, 2-6 exposures of 30 min each with a 1-min interval between them during which a total change of the air was made) caused an up to 3.5-fold increase of the number of micronucleated polychromatic erythrocytes (PCE) in mouse bone marrow detected 24 h after the TS exposure. Furthermore, a stable 2-5-fold elevation of the number of micronucleated normochromatic erythrocytes (NCE) was detected in the peripheral blood of mice treated daily (2 x 30 min) with TS, starting 48 h after the first TS exposure. The application of the micronucleus test in mouse peripheral blood, a more convenient and useful approach for detecting the chronic clastogenic activity of TS, allowed us to establish the cumulative genotoxic effect of TS in mice.  相似文献   

12.
Ascorbic acid (AA) is an important cytoplasmic antioxidant that mice synthesize in the liver, the intracellular levels of which decrease in an oxidative stress situation such as endotoxic shock. The present work deals with the changes in AA levels, that modulate the immune function, in the two main immune cells, namely macrophages and lymphocytes, from female BALB/c mice suffering endotoxic shock caused by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) (100 mg/kg). The intake by cells of this antioxidant present in vitro at different concentrations was also studied. The animals show an oxidative stress, standardized in previous studies, that causes mortality at 30h after LPS injection. The cells were obtained from the peritoneum at 2, 4, 12 and 24h after LPS or PBS (control) injections and were incubated without or with AA at 0.01, 0.1 and 1 mM for 10, 30, 60, 120 or 180 min. The hepatic AA levels were also studied at 0, 2, 4, 12 and 24h after LPS injection. The peritoneal cells obtained from animals injected with LPS showed increased AA levels in relation to the control cells at all times after LPS injection, with maximal effect at 12h. The AA levels decreased after this time, in agreement with changes in the AA hepatic levels. The increase was due to the AA of lymphocytes since macrophages showed a decrease in AA at different times after LPS injection. Both cells showed an increase in the intracellular levels of AA when this antioxidant was added in vitro. This takes place mainly at 30–60 min of incubation in cells from controls and at 10 min in cells from treated mice 12–24 h after LPS injection. The incorporation decreased at these times of endotoxic shock, a few hours before death. In all cases AA levels were higher in lymphocytes than in macrophages, and 1 mM was the most effective concentration. These results suggest that the immune cells need appropriate levels of antioxidants, such as AA, under oxidative stress conditions, and that while lymphocytes take and accumulate AA, macrophages use it.  相似文献   

13.
The aquatic environment is the largest sink for the highly toxic organotin compounds, particularly as one of the main sources is the direct release of organotins from marine antifouling paints. The aim of this study was to investigate the mitochondrial toxicity and proapoptotic activity of tributyltin chloride (TBTC) in teleost leukocytes and nucleated erythrocytes, by means of electron microscopy investigation and mitochondrial membrane potential evaluation, in order to provide an early indicator of aquatic environmental pollution. Erythrocytes and leukocytes were obtained from an inbred strain of rainbow trout (Oncorhynchus mykiss). Transmission electronic micrographs of trout red blood cells (RBC) incubated in the presence of TBTC at 1 and 5 microM for 60 min showed remarkable mitochondrial morphological changes. TBTC-mediated toxicity involved alteration of the cristae ultrastructure and mitochondrial swelling, in a dose-dependent manner. Both erythrocytes and leukocytes displayed a consistent drop in mitochondrial membrane potential following TBTC exposure at concentrations >1 microM. The proapoptotic effect of TBTC on fish blood cells, and involvement of mitochondrial pathways was also investigated by verifying the release of cytochrome c, activation of caspase-3 and the presence of "DNA laddering". Although mitochondrial activity was much more strongly affected in erythrocytes, leukocytes incubated in the presence of TBTC showed the characteristic features of apoptosis after only 1 h of incubation. Longer exposures, up to 12 h, were required to trigger an apoptotic response in erythrocytes.  相似文献   

14.
Pyrimethamine is an antimalarial drug that has also been used successfully to treat autoimmune diseases such as lymphoproliferative syndrome. In this work, the effect of pyrimethamine (PYR) on the production of free radicals in malaria-infected mice was studied to better understand the drug’s immunomodulatory properties. BALB/c and CBA/Ca mice were infected with Plasmodium yoelii 17XL. Seven days after infection, mice were treated with PYR or vehicle and sacrificed 24 h later. Treatment with PYR increased superoxide dismutase and glutathione peroxidase activities in erythrocytes and the liver, augmented the levels of nitric oxide in the serum, and upregulated mRNA levels of superoxide dismutase, glutathione peroxidase, catalase, and iNOS in the spleen. In addition, PYR increased lipoperoxidation and protein carbonylation in infected mice. Our results indicate that P. yoelii 17XL reduces oxidative stress in infected cells, while PYR induces it, which is associated with increased parasite elimination. Thus, it is possible that oxidative stress generated by pyrimethamine is also involved in its immunomodulatory mechanism of action.  相似文献   

15.
Genetic polymorphism of ganglioside expression in mouse organs   总被引:2,自引:0,他引:2  
In previous studies it was demonstrated that there are three variations as to the expression of liver gangliosides in inbred strains of mice; the first group expresses GM3(NeuGc) as a major component, the second group, GM2(NeuGc), and the third group, GM2(NeuGc), GM1 (NeuGc), and GD1a(NeuGc). In the present study, we attempted to determine which organs, if any, exhibit the same polymorphic variations as those observed in the liver. Thus, the gangliosides in spleen, thymus, heart, lung, kidney, testis, and erythrocytes, as well as those in liver, were examined using a TLC-mapping technique or by one-dimensional TLC. WHT/Ht, BALB/c, and ICR mice, which are typical strains as to the polymorphic expression of liver gangliosides, were used for the analysis. The presence of GM1 was confirmed by not only chemical detection on TLC plates but also with a TLC-immunostaining procedure using choleragenoid. These comparative studies indicated that only erythrocytes exhibited the same polymorphic variations of ganglioside expression as those in the liver, but the other six organs showed specific patterns which were not polymorphic. In addition to this, there were the following two interesting findings. Firstly, WHT/Ht mice, in which GM2(NeuGc) and GM1(NeuGc) are not expressed in the liver and erythrocytes, did not express a detectable amount of GM2(NeuGc) but expressed GM1(NeuGc) in all the other organs. Secondly, marked polymorphic variation was found in the expression of GM4(NeuAc) in the erythrocytes.  相似文献   

16.
Abstract Groups of BALB/c mice were treated with a sub-lethal dose (60 μg) of staphylococcal enterotoxin B (SEB) intraperitoneally and were sacrificed at 2, 5, 8, or 10 h post-injection. Organ, blood plasma and lymph node samples from these mice were analyzed. Plasma levels of urea, creatinine and alanine aminotransferase were significantly raised above normal by 5 h post-injection. However, alkaline phosphatase levels showed an erratic increase after toxin administration and, after administration of 10–40 μg SEB per mouse, were consistently at least 30% below normal levels at 24 h post-injection. Weight change was also monitored but found to be inconsistent. Lung, spleen and kidney samples appeared normal on histopathological examination, but liver samples showed minor polymorph infiltration and congestion. TNF-α, and IL-1 α levels in the plasma were raised by 8 h to picogram levels per ml of plasma, whereas IFN-γ and IL-2 were raised by 2 h to nanogram levels per ml of plasma. Lymph node cells taken from mice treated with toxin were given a secondary stimulation with toxin in vitro. Although the response of the cells was lower than normal on assay at four days, a time response curve showed a peak in cell responsiveness to secondary stimulation with toxin at three days. These data indicate that biochemical markers and cytokine levels are affected by the administration of SEB to mice and may be used as indicators of toxicity.  相似文献   

17.
Altered membrane proteins have been previously described in beta thalassemia and are thought to play an important role in the shortened erythrocyte survival. To investigate the mechanism by which these changes occur, purified heme-containing alpha-hemoglobin chains were entrapped within normal erythrocytes by reversible osmotic lysis. These resealed cells exhibited normal hemoglobin concentration, cell volume, deformability, and no substantial modifications of membrane proteins. Incubation (37 degrees C; up to 20 h) of the alpha-chain-loaded cells resulted in increasing amounts of membrane-associated alpha-chains. This was associated with concurrent decreases in the protein concentrations and reactive thiol groups of spectrin, ankyrin, and actin as determined by gel electrophoresis. The decreases in membrane protein concentration and reactive thiol groups after 20 h of incubation were closely correlated (R2 = 0.947) in the alpha-chain-loaded cells. Indicative of increased oxidant stress within the alpha-chain-loaded erythrocytes, methemoglobin generation was also significantly increased in the alpha-chain-loaded erythrocytes. In addition, entrapment of alpha-chains led to a progressive and significant decrease in erythrocyte deformability. Thus, the entrapment of purified alpha-chains in normal erythrocytes resulted in structural and functional abnormalities very similar to that observed in beta-thalassemic erythrocytes in vivo. The model described provides a means by which the fate of excess alpha-chains, their pathophysiological effects, as well as possible therapeutic approaches to thalassemias can be examined.  相似文献   

18.
Erythrocytes endure constant exposure to oxidative stress. The major oxidative stress scavenger in erythrocytes is glutathione. The rate-limiting enzyme for glutathione synthesis is glutamate–cysteine ligase, which consists of a catalytic subunit (GCLC) and a modifier subunit (GCLM). Here, we examined erythrocyte survival in GCLM-deficient (gclm−/−) mice. Erythrocytes from gclm−/− mice showed greatly reduced intracellular glutathione. Prolonged incubation resulted in complete lysis of gclm−/− erythrocytes, which could be reversed by exogenous delivery of the antioxidant Trolox. To test the importance of GCLM in vivo, mice were treated with phenylhydrazine (PHZ; 0.07 mg/g b.w.) to induce oxidative stress. Gclm−/− mice showed dramatically increased hemolysis compared with gclm+/+ controls. In addition, PHZ-treated gclm−/− mice displayed markedly larger accumulations of injured erythrocytes in the spleen than gclm+/+ mice within 24 h of treatment. Iron staining indicated precipitations of the erythrocyte-derived pigment hemosiderin in kidney tubules of gclm−/− mice and none in gclm+/+ controls. In fact, 24 h after treatment, kidney function began to diminish in gclm−/− mice as evident from increased serum creatinine and urea. Consequently, while all PHZ-treated gclm+/+ mice survived, 90% of PHZ-treated gclm−/− mice died within 5 days of treatment. In vitro, upon incubation in the absence or presence of additional oxidative stress, gclm−/− erythrocytes exposed significantly more phosphatidylserine, a cell death marker, than gclm+/+ erythrocytes, an effect at least partially due to increased cytosolic Ca2+ concentration. Under resting conditions, gclm−/− mice exhibited reticulocytosis, indicating that the enhanced erythrocyte death was offset by accelerated erythrocyte generation. GCLM is thus indispensable for erythrocyte survival, in vitro and in vivo, during oxidative stress.  相似文献   

19.
The effect of the cationic permeant fluorescent dye, rhodamine 123 (R123), on the in vivo growth of Plasmodium yoelii was examined. Plasmodium yoelii-infected mouse erythrocytes were incubated in vitro with R123 and injected intravenously into mice. Examination of daily parasitemias showed that R123 delayed parasite growth whereas rhodamine 110, a neutral compound, and fluorescein, a negatively charged fluorescent dye, did not. Infected erythrocytes treated with R123 were not cleared from the circulation even 7 h after injection. Quantitation of cell-associated R123 by spectrophotometry revealed that infected cells with increased levels of R123 considerably prolonged the 2% prepatent period, the time required for the parasite to develop a 2% parasitemia. Degenerating parasites within and outside the host erythrocytes were observed on day 1 of infection in the mice. Thus it follows that R123, which accumulated in infected erythrocytes, inhibits the growth of P. yoelii; moreover, when R123-labeled infected erythrocytes were treated with 1-10 microM carbonylcyanide m-chlorophenylhydrazone (CCCP), a proton ionophore, to release R123 from the cells, the inhibitory effect on the growth rate of P. yoelii was partially reversed.  相似文献   

20.
Natural dicarbonyls, which may be accumulated during oxidative stress in atherosclerosis (e.g. malondialdehyde) or carbonyl stress in diabetes mellitus (glyoxal and methylglyoxal) effectively inhibited activities of commercial preparations of the antioxidant enzymes: Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and Se-contained glutathione peroxidase from human and bovine erythrocytes, and also rat liver glutathione-S-transferase. After incubation of human erythrocytes with 10 mM of each investigated dicarbonyls the decrease of intracellular Cu,Zn-SOD was observed. The decreased activity of erythrocyte Cu,Zn-SOD was also detected in patients with diabetes mellitus type 2 with carbohydrate metabolism impairments but effective sugar-lowered therapy was accompanied by the increase of this enzyme activity. The increase of erythrocytes Cu,Zn-SOD activity in diabetic patients treated with metformin (which may utilize methylgly-oxal) was higher than in erythrocytes of diabetic patients subjected to traditional therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号