首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
上皮细胞和组织发生癌变时,通常会伴随细胞极性丧失和组织结构紊乱的现象。然而,极性丧失对肿瘤发生的贡献却一直存在争论。随着控制上皮细胞顶-底极性分子机制的逐步揭示,人们发现,这一极性机制与肿瘤发生联系紧密。上皮细胞顶-底极性的确立主要依赖于顶膜区Par复合物与底侧膜区Scrib复合物之间的拮抗。当Scrib复合物活性下调或Par复合物活性上调时,两复合物间的这种相互制约的平衡就会被打破,从而导致肿瘤发生。本文主要综述Scrib复合物和Par复合物如何参与上皮细胞顶-底极性的建立,以及两者间的互作与肿瘤发生的关系。  相似文献   

2.
卫旭彪  刘厚奇 《生命科学》2008,20(5):812-815
细胞极性的建立是组织发育和器官形成的重要环节。而其中紧密连接是上皮细胞极性建立和维持的重要结构,也是极性破坏的靶点。因此,紧密连接对上皮细胞极性来说十分重要。保守的PAR3-PAR6-aPKC极性复合体在紧密连接的形成过程中发挥中枢作用。PAR3可与JAMs、TIAM1及LIMK2等分子相互作用,在多个信号通路中发挥调节作用,其相互作用机制复杂。PAR3还可受到来自胞外信号作用于EGFR等受体型酪氨酸磷酸化蛋白激酶的调控。由于PAR3在紧密连接形成的过程中至关重要,有关PAR3的蛋白磷酸化和EGFR等信号转导通路影响PAR3,从而调控紧密连接形成的机制成为了新的研究热点。  相似文献   

3.
顶-底极性是上皮细胞的一项主要特征,参与细胞形态、迁移、功能维持等多个生物学事件。上皮细胞顶-底极性复合物包括PAR复合物、SCRIB复合物和CRB复合物。丧失极性是细胞癌化的标志之一,并且在人类癌症中也发现了顶-底极性复合物的异常表达。本文将就目前有关顶-底极性复合物在癌症方面的研究进行综述,重点阐述顶-底极性复合物在肿瘤发生、发展过程中的作用及调控机制。  相似文献   

4.
陈慧灵  陈晓萍 《遗传》2013,35(3):281-286
哺乳动物的神经发育过程极其复杂, 其形态结构和机能变化受到严格的调控。细胞极性是哺乳动物神经发生中最基本的特征之一, 在其调控因素中, Par极性复合体是研究最多的蛋白质。神经发育过程中Par蛋白的分布与量呈现动态变化, 影响细胞连接建立、细胞极性形成、神经突触发生及神经元迁移, 也影响到神经前体细胞的命运。文章主要从胚胎新皮层神经前体细胞及体外培养神经元角度, 总结了近年在Par极性蛋白的细胞内分布、机能及作用机制方面的研究进展。  相似文献   

5.
细胞极性是生物中广泛存在的一个特征。上皮细胞是构成表皮、腺体、气管和消化道等组织的一类特化细胞。上皮细胞通常沿顶端-基底端轴向发生极化,形成紧密连接、粘附连接等胞间结构,同时细胞膜、细胞骨架和中心体、内膜系统、细胞核等也发生不对称分布,使细胞能行使分泌、吸收和屏障等多种重要的生理功能。有许多分子参与上皮细胞极性的建立和维持,其中最主要的是3个极性复合物,即Par-aPKC复合物,Scribble(Lg1-Dlg-Scrib)复合物和Crb(Crb-Pals-PATJ)复合物,三者共同配合发挥功能。  相似文献   

6.
极性是多数细胞的共同特征,是细胞分化和细胞行使正常功能的基础,细胞极性的建立对于生物体的生长发育至关重要。过去十年的研究显示,进化上保守的非典型蛋白激酶C(aPKC)复合物在许多生物的多种细胞中都参与了细胞极性的建立,并且在其中扮演着相当重要的角色,这为揭示极性建立的机制提供了重要的线索。以线虫合子前-后极(anterior-posterior)的形成、哺乳动物和果蝇上皮细胞顶-底极(apical-basal)的建立以及果蝇神经母细胞不对称分裂中细胞命运决定子的分配这3个典型的极性过程为主线,综述了aPKC复合物在细胞极性建立中的作用,并探讨其中的分子机制。  相似文献   

7.
不对称细胞分裂是动物发育过程中用以调控细胞分化的一种进化上保守的基本模式。极性的祖细胞通过不对称分裂产生两个不同命运的子细胞,这一过程涉及细胞命运决定因子的不对称分布、纺锤体的旋转定位等,而这些过程都必须依赖特定细胞极性的存在才能得以正常进行。简要综述了高度保守的蛋白复合物PAR/aPKC在细胞极性建立和维持中的重要作用,以及它如何调控纺锤体定位和命运决定因子不对称分配,并讨论了在该领域的一些新发现和研究进展。  相似文献   

8.
生长素输出载体PIN家族研究进展   总被引:1,自引:0,他引:1  
林雨晴  齐艳华 《植物学报》2021,56(2):151-165
生长素极性运输调控植物的生长发育。生长素极性运输主要依赖3类转运蛋白: AUX/LAX、PIN和ABCB蛋白家族。生长素在细胞间流动的方向与PIN蛋白在细胞上的极性定位密切相关。PIN蛋白由1个中心亲水环和2个由中心亲水环隔开的疏水区组成。中心亲水环上含多个磷酸化位点,其为一些蛋白激酶的靶点。PIN蛋白受多方面调控,包...  相似文献   

9.
紧密连接(tight junction,TJ)广泛存在于所有上皮或内皮细胞间连接的最顶端,是物质经旁细胞途径转运的结构和功能基础。TJ是由跨膜蛋白和胞浆蛋白两大类构成的大分子复合物,主要行使"屏障"和"栅栏"功能,前者可对物质的大小和电荷进行选择,进而调控旁细胞途径的物质转运;后者则通过调控顶膜和基底侧膜两个功能区之间的脂质和蛋白等物质的自由弥散形成高度极性化的细胞。近年来,关于TJ在各种上皮细胞中的作用及调控机制的研究日益增多。本文重点综述了上皮细胞间TJ研究的最新进展,包括TJ的构成、结构和功能检测以及调控机制,并以几类研究比较集中的上皮类型为例介绍TJ研究的现状,这将为防治与TJ改变相关的上皮屏障功能障碍性疾病提供新的思路。  相似文献   

10.
逆向囊泡转运复合物Retromer主要负责介导货物蛋白从内体向反式高尔基体或细胞表面逆向转运,是细胞内囊泡转运分选系统的重要成员.Retromer复合物主要含有两个亚复合体:货物选择复合体VPS26-VPS29-VPS35和膜结合复合体SNX-BAR.本文着重综述了Retromer复合物和SNX蛋白家族参与囊泡转运过程的分子机制以及它们在发育中对Wnt信号的调控作用;并讨论了Retromer复合物在细胞极性形成、细胞凋亡、神经元信号传递中的重要作用;以及该复合物与帕金森和阿尔茨海默病等退行性疾病之间的关系.  相似文献   

11.
酵母pho80和pho85基因编码的蛋白质是阻遏型酸性磷酸酯酶基因表达调控系统中的2种负调控因子.其中pho85基因编码产物己被证明是1种类似于p34~(cdc2/CDC28)的蛋白激酶,磷酸化该调控系统中的正调控因子Pho4,并使之失活,用抗pho85抗体从啤酒酵母YPH499及其衍生菌株的细胞抽提液中得到Pho85免疫复合物,对大肠杆菌表达的Pho4蛋白进行了体外磷酸化分析,证实酵母Pho80是Pho85蛋白激酶活力所必需,pho80基因的表达水平直接影响Pho85免疫复合物对Pho4蛋白的磷酸化程度.根据基因序列推导的Pho80蛋白氨基酸序列中,含有一段与几种cyclin同源的区域,通过寡核苷酸的插入或小片段缺失而对该区域及邻近部位在基因水平进行的微小改变均可导致Pho80丧失阻遏酸性磷酸酯酶基因表达的能力.  相似文献   

12.
比较人正常胃黏膜上皮细胞GES-1与人胃癌细胞SGC-7901间酪氨酸磷酸化蛋白质的差异,筛选差异磷酸化蛋白质分子,为揭示胃癌发生发展的分子机制提供新的理论依据.采用免疫沉淀方法从人胃黏膜上皮细胞GES-1与人胃癌细胞SGC-7901总蛋白质中免疫沉淀出酪氨酸磷酸化蛋白质,用SDS-PAGE和二维凝胶电泳技术分离沉淀出的酪氨酸磷酸化蛋白质,银染,差异蛋白点进行胶内酶解,采用MALDI-TOF/TOF-MS质谱进行差异蛋白质鉴定.结果显示获得了7个差异酪氨酸磷酸化蛋白质,这些蛋白质涉及细胞骨架、细胞调控等.通过比较正常胃黏膜上皮细胞与胃癌细胞内酪氨酸磷酸化蛋白质的差异,筛选获得7个差异酪氨酸磷酸化蛋白质分子,有助于深入研究胃癌发生发展的分子机制,进而为胃癌的早期诊断和防治提供新的理论依据和作用靶标.  相似文献   

13.
细胞周期检定点激酶ATM蛋白属于磷酸肌醇3激酶(PI-3K)家族成员,也是哺乳动物细胞BASC高分子蛋白复合物的组成之一。ATM调整由于DNA损伤引发的DNA修复和凋亡通路,该通路主要表现为DNA损伤激活ATM激酶,ATM激酶磷酸化其下游的相应蛋白,使细胞在细胞周期关卡处停滞分裂,主要是G1-S期和G2-M期的阻滞,使损伤的DNA得以修复,当修复失败时,细胞进入凋亡进程。ATM磷酸化的蛋白质很多,如p53,cdc25A,cdc25C等,这些蛋白质对细胞周期关卡调控都非常重要,因此也就证明了ATM在细胞周期调控中的重要作用。  相似文献   

14.
细胞极性是指细胞形态、蛋白分布以及细胞功能的不对称性,它是细胞发育、维持项一底极性、损伤修复及组织完整性等生理过程所必需的,主要是由极性蛋白调控。一旦极性蛋白之间的平衡失调,则会破坏细胞极性,诱导肿瘤发生、增殖及迁移。研究表明,极性蛋白的异常表达及错误定位均与肿瘤紧密相关。上皮细胞肿瘤发生及恶性转变过程通常伴有细胞极性丢失以及组织结构紊乱的现象,尤其是经历上皮间充质转变的上皮肿瘤细胞更易侵袭周围基质,最终引发转移。作者就目前有关极性蛋白在肿瘤方面的研究作一综述,重点阐述极性蛋白在肿瘤转移中的功能,并对相关问题进行讨论。  相似文献   

15.
纤毛-多囊蛋白复合物的功能或者结构异常,是导致常染色体显性多囊肾病的主要原因.该复合物除了被认为在正常的肾上皮细胞上起着机械和化学感受器的作用,可能在骨细胞中也有类似的作用.本文总结了多囊蛋白和纤毛的结构、分布特点以及在肾发育过程中所发挥的作用;着重综述了纤毛 多囊蛋白复合物在肾上皮细胞上作为机械和化学感受器,通过影响细胞内一系列的信号途径,调控细胞的基因转录和蛋白合成的最新研究进展,包括与细胞内钙离子变化有关的钙调神经磷酸酶-NFAT途径和PI3K-Atk途径,调控细胞周期的JAK-STAT途径,及维持正常肾结构的Wnt/β连环蛋白信号途径等;还将通过比较在肾上皮细胞上纤毛 多囊蛋白复合物所激活的信号传导途径和在骨细胞中传导机械刺激的信号转导途径的类同,提示在骨细胞中,纤毛 多囊蛋白复合物可能起着在肾上皮细胞上类似的机械感受器作用,为系统性阐明多囊肾病的发病机制,以及揭示失重或负重状态下骨细胞机械感受的分子机制提供了一个新思路.  相似文献   

16.
泛素化和磷酸化协同作用调控蛋白质降解   总被引:1,自引:0,他引:1  
在真核细胞中,泛素化和磷酸化是2种常见的蛋白质修饰方式。泛素在蛋白酶体降解途径中发挥重要的靶向作用,细胞外信号严格调控着目的蛋白的泛素化。在很多情况下,这种调控依赖于蛋白质的磷酸化。由磷酸化影响的调控步骤可能与E3泛素连接酶对底物的识别有关,也可能与实际的交联反应有关。这种调控是通过对底物或E3连接酶本身的磷酸化实现的。  相似文献   

17.
鸡输卵管上皮细胞是卵清蛋白的主要分泌细胞,是研究输卵管特异表达蛋白调控的重要工具。在以往的研究中,多采用普通DMEM培养液对鸡输卵管上皮细胞进行分离与培养,容易造成其自身特性在体外培养过程中的改变。本研究我们优化了细胞分离方法,发现从输卵管漏斗部组织分离的输卵管上皮细胞增殖较快;用鸡输卵管上皮细胞培养基相比DMEM更适合促进细胞生长;与胰酶相比,用Accutase消化酶进行细胞传代,有利于输卵管上皮细胞特性维持。对所获得的输卵管上皮细胞鉴定发现,己烯雌酚能促进卵清蛋白的表达,说明分离培养的细胞保持了鸡输卵管上皮细胞特性。本研究建立的方法为输卵管特异表达蛋白调控以及家禽生物反应器的研究奠定了基础。  相似文献   

18.
Na-K-Cl协同转运蛋白是一类膜蛋白,负责转运Na、K、Cl离子进出上皮细胞与非上皮细胞。Na-K-Cl介导的转运过程是电中性的,多数情况下是1Na:1K:2Cl(乌贼轴突中是2Na:1 K:3Cl),其活性被布美他尼(bumetanide)和呋塞米(furosemide)所抑制。迄今为止,Na-K-Cl协同转运蛋白被鉴定出来两个同源异构体:NKCC1和NKCC2。NKCC1存在于多个组织中,含有NKCC1的上皮大多数属于分泌上皮,而且会有Na-K-Cl协同转运蛋白位于基底膜外侧;NKCC2只存在于肾脏,位于上皮细胞致密班的顶膜上。Na-K-Cl协同转运蛋白的调控在不同的细胞和组织中是不同的。Na-K-Cl协同转运蛋白的活性会受激素刺激和细胞体积变化的影响;有些组织中,这种调控作用(尤其是NKCC1亚基)是通过特定的激酶使该转运蛋白自身发生氧化/硝化、磷酸化/去磷酸化来实现的;蛋白过表达在Na-K-Cl协同转运蛋白的激活中也起重要作用。  相似文献   

19.
周亚亚  贺福初  姜颖 《生物磁学》2011,(15):2996-3000
Na-K-Cl协同转运蛋白是一类膜蛋白,负责转运Na、K、Cl离子进出上皮细胞与非上皮细胞。Na-K-Cl介导的转运过程是电中性的,多数情况下是1Na:1K:2C1(乌贼轴突中是2Na:1K:3C1),其活性被布美他尼(bumetanide)和呋塞米(furosemide)所抑制。迄今为止,Na-K-Cl协同转运蛋白被鉴定出来两个同源异构体:NKCCl和NKCC2。NKCCl存在于多个组织中,合有NKCCl的上皮大多数属于分泌上皮,而且会有Na-K-Cl协同转运蛋白位于基底膜外侧;NKCC2只存在于肾脏,位于上皮细胞致密斑的顶膜上。Na-K-Cl协同转运蛋白的调控在不同的细胞和组织中是不同的。Na-K-Cl协同转运蛋白的活性会受激素刺激和细胞体积变化的影响;有些组织中,这种调控作用(尤其是NKCCl亚基)是通过特定的激酶使该转运蛋白自身发生氧化/硝化、磷酸化/去磷酸化来实现的;蛋白过表达在Na-K-Cl协同转运蛋白的激活中也起重要作用。  相似文献   

20.
ERK3是ERK家族中结构较为独特的成员,尤其在分子生物学特征上与ERK家族其他成员明显不同,如基因结构中外显子之间的大内含子、蛋白质结构中活化环的丝氨酸单磷酸化位点以及激酶C端的延伸序列等.ERK3具有独特的丝氨酸单磷酸化位点,导致所有以苏氨酸/酪氨酸双磷酸化位点为磷酸化靶点的MEK分子均不能活化ERK3.ERK3的C端延伸序列能与细胞周期蛋白D3结合并调控ERK3的亚细胞定位,从而影响ERK3对细胞周期的调节.据目前文献推测,ERK3调控细胞周期的信号通路可能为:Ras→B-Raf→ERK3激酶→ERK3→G1期CDK复合物减少→S期抑制因子增多→细胞增殖阻滞于S期→细胞停止增殖,进入分化.此外,ERK3信号通路的活化与细胞分化、胚胎发育、胰岛素分泌以及肿瘤的发生密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号