首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The molecular composition of the substrate is of critical importance for neurite extension by isolated identified leech nerve cells in culture. One substrate upon which rapid growth occurs in defined medium is a cell-free extract of extracellular matrix (ECM) that surrounds the leech central nervous system (CNS). Here we report the co-purification of neurite-promoting activity with a laminin-like molecule. High molecular mass proteins from leech ECM purified by gel filtration exhibited increased specific activity for promoting neurite outgrowth. The most active fractions contained three major polypeptide bands of ca. 340, 250 and 220 kDa. Electron microscopy of rotary-shadowed samples showed three macromolecules, one of which had a cross-shaped structure similar to vertebrate laminin. A second six-armed molecule resembled vertebrate tenascin and a third rod-like molecule resembled vertebrate collagen type IV. The most active fractions contained a protein of ca. 1 MDa on non-reducing gels with disulphide-linked subunits of ca. 220 and 340 kDa, with cross-shaped laminin-like molecules. We conclude that a laminin-like molecule represents a major neurite promoting component present in leech ECM. The experiments represent a first step in determining the location of leech laminin within the CNS and assessing its role in neurite outgrowth during development and regeneration.  相似文献   

2.
The transplantation of Schwann cells (SCs) could successfully promote axonal regeneration. This is likely to attribute to the adhesion molecules expression and growth factors secretion of SCs. But which factor(s) play a key role has not been precisely studied. In this study, an outgrowth assay using dorsal root ganglia (DRG) neuron-SC co-culture system in vitro was performed. Co-culture of SCs or application of SC-conditioned medium (CM) substantially and significantly increased DRG neurite outgrowth. Further, nerve growth factor and NGF receptor (TrkA) mRNA were highly expressed in Schwann cells and DRG neuron, respectively. The high concentration of NGF protein was detected in SC-CM. When K-252a, a specific inhibitor of NGF receptor was added, DRG neurite outgrowth was significantly decreased in a concentration-dependent manner. These data strongly suggest that SCs play important roles in neurite outgrowth of DRG neurons by secreted NGF.  相似文献   

3.
To analyze regional differences in the embryonic mouse brain with respect to environmental influence on mitral cell neurites, olfactory bulb fragments were cultured on layers of brain cells which had been dissociated from various regions. Long mitral cell neurites elongated on paleocortex and neocortex cell layers, but not on the septum, mesencephalon, or diencephalon cell layers. Cell membranes prepared from the paleocortex and neocortex also supported outgrowth of long mitral cell neurites, but cell membranes prepared from the septum, mesencephalon, or diencephalon did not. The supportability of mitral cell neurites in the paleocortex and neocortex membranes was completely abolished by trypsin treatment. Neurite outgrowth of the mitral cells on poly-L -lysine was not inhibited by the mesencephalon or diencephalon membranes, but was promoted by the paleocortex and neocortex membranes. These results indicate that the paleocortex and neocortex regions selectively express membrane-bound factors which promote neurite outgrowth of mitral cells. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 415–425, 1997.  相似文献   

4.
5.
Receptor-mediated interactions between neurons and astroglia are likely to play a crucial role in the growth and guidance of CNS axons. Using antibodies to neuronal cell surface proteins, we identified two receptor systems mediating neurite outgrowth on cultured astrocytes. N-cadherin, a Ca2(+)-dependent cell adhesion molecule, functions prominently in the outgrowth of neurites on astrocytes by E8 and E14 chick ciliary ganglion (CG) neurons. beta 1-class integrin ECM receptor heterodimers function less prominently in E8 and not at all in E14 neurite outgrowth on astrocytes. The lack of effect of integrin beta 1 antibodies on E14 neurite outgrowth reflects an apparent loss of integrin function, as assayed by E14 neuronal attachment and process outgrowth on laminin. N-CAM appeared not to be required for neurite outgrowth by either E8 or E14 neurons. Since N-cadherin and integrin beta 1 antibodies together virtually eliminated E8 CG neurite outgrowth on cultured astrocytes, these two neuronal receptors are probably important in regulating axon growth on astroglia in vivo.  相似文献   

6.
I have compared central nervous system (CNS) neurite outgrowth on glial and nonglial cells. Monolayers of glial cells (astrocytes and Schwann cells) or nonglial cells (e.g., fibroblasts) were prepared and were shown to be greater than 95% pure as judged by cell type-specific markers. These monolayers were then tested for their ability to support neurite outgrowth from various CNS explants. While CNS neurites grew vigorously on the glial cells, most showed little growth on nonglial cell monolayers. Neurites grew singly or in fine fascicles on the glial cells at rates greater than 0.5 mm/d. The neurite outgrowth on astrocytes was investigated in detail. Scanning and transmission electron microscopy showed that the neurites were closely apposed to the astrocyte surface and that the growth cones were well spread with long filopodia. There was no evidence of significant numbers of explant- derived cells migrating onto the monolayers. Two types of experiments indicated that factors associated with the astrocyte surface were primarily responsible for the vigorous neurite outgrowth seen on these cells: (a) Conditioned media from either astrocytes or fibroblasts had no effect on the pattern of outgrowth on fibroblasts and astrocytes, and conditioned media factors from either cell type did not promote neurite outgrowth when bound to polylysine-coated dishes. (b) When growing CNS neurites encountered a boundary between astrocytes and fibroblasts, they stayed on the astrocytes and did not encroach onto the fibroblasts. These experiments strongly suggest that molecules specific to the surfaces of astrocytes make these cells particularly attractive substrates for CNS neurite outgrowth, and they raise the possibility that similar molecules on embryonic glial cells may play a role in guiding axonal growth during normal CNS development.  相似文献   

7.
Identification of major proteins in maize egg cells   总被引:15,自引:0,他引:15  
In most flowering plants, the female gametophyte develops in an ovule deeply embedded in the ovary. Through double fertilization, the egg cell fuses with the sperm cell, resulting in a zygote, which develops into the embryo. In the present study, we analyzed egg cell lysates by polyacrylamide gel electrophoresis and subsequent mass spectrometry-based proteomics technology, and identified major protein components expressed in the egg cell. The identified proteins included three cytosolic enzymes of the glycolytic pathway, glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase and triosephosphate isomerase, two mitochondrial proteins, the ATP synthase beta-subunit and an adenine nucleotide transporter, and annexin p35. In addition, expression levels of these proteins in the egg cell were compared with those in the early embryo, the central cell and the suspension cell. Annexin p35 was highly expressed only in the egg cell, and glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase and the adenine nucleotide transporter were expressed at higher levels in egg cells than in central and cultured cells. These results indicate that annexin p35 in the egg cell and zygote is involved in the exocytosis of cell wall materials, which is induced by a fertilization-triggered increase in cytosolic Ca2+ levels, and that the egg cell is rich in an enzyme subset for the energy metabolism.  相似文献   

8.
Schwann cells (SCs) can support the regeneration of lesioned fiber tracts of the peripheral and central nervous system and have been transplanted alone or in combination with synthetic nerve guides. For neuronal tissue engineering purposes, the cells must be isolated from small biopsies and expanded in vitro. In this study we analyze the impact of cell expansion on 9 different cell parameters, comparing short- and long-term cultured rat SCs, which we refer to as 'young' and 'old' or 'aged' cells, respectively. In comparison to young SCs, old SCs doubled the axonal outgrowth from dorsal root ganglion explants and displayed only one-third as much adhesion to the gray and white matter of spinal cord cryosections. In a 3-dimensional extracellular matrix the two cell populations showed very different cellular responses with regard to cell morphology and cell-cell adhesion. Cell proliferation of old SCs was independent of serum components and was not hampered by contact inhibition. In addition, population doubling times were reduced by a factor of almost three compared to those of young SCs. Despite considerable karyotype changes, with an average of 68.7 chromosomes versus 42 in native rat cells, old SCs did not show any increase in telomerase activity and loss of anchorage dependence--characteristics that are typical of tumor cells. The data also provide biological insights into which cell characteristics (proliferation and adhesion, for example) are functionally clustered and either change or remain constant with aging in vitro. Though the data indicate a lack of tumorigenic transformation coupled with increased neurite outgrowth-promoting activity after extensive SC expansion in vitro, thus suggesting better regeneration qualities, we strongly recommend that in vitro aged rat SCs (>11 passages) should not be employed for tissue engineering.  相似文献   

9.
10.
We have previously shown that muscle cells secrete insulin-like growth factor-binding proteins. In the present study, BC3H-1 cells were shown to secrete one binding protein of Mr 32,000, whereas L6 cells secreted two binding proteins of Mr 31,000 and 24,000, as determined by ligand blotting. Subconfluent proliferating L6 cells secrete more of the Mr 24,000 binding protein, relative to the Mr 31,000 form. In contrast, differentiated L6 myotubes secreted similar quantities of the two forms. Insulin-like growth factor I preferentially stimulated secretion of the Mr 31,000 versus the Mr 24,000 binding protein from L6 cells and caused an increase in the secretion of the Mr 32,000 binding protein from BC3H-1 cells. The Mr 31,000 binding protein from L6 cells had a greater affinity for insulin-like growth factor II compared with insulin-like growth factor I, as did the Mr 32,000 binding protein of BC3H-1 cells. In contrast, the Mr 24,000 binding protein of L6 cells preferred insulin-like growth factor I. Neither porcine insulin nor relaxin competed for 125I-IGF-I binding. In conclusion, these muscle cell lines secrete only one or two forms of insulin-like growth factor-binding proteins. L6 cell differentiation is associated with a relative increase in the secretion of the Mr 31,000 binding protein compared with the Mr 24,000 form. Insulin-like growth factor I stimulates the secretion of its own binding proteins from muscle cells, and this may be an important mechanism for modulating cellular responsiveness to this growth factor.  相似文献   

11.
Protein phosphatase 2A (PP-2A) has been implicated to be crucial in neural development and the normal function of nervous system. However, little is known about its role in neuritogenesis. In this study, we reported that inhibition of PP-2A strongly suppresses the outgrowth of cell processes only during the initiation stage, while activation of PP-2A promotes extensive outgrowth of long neurites in Neura2A cells and long single axon or multiple axons in hippocampal neurons. Our results indicated that PP-2A may be an important positive regulator in neurite outgrowth, and upregulation PP-2A could be a possible target for the therapy of axonopathy in neural diseases.  相似文献   

12.
13.
The process of mammalian implantation has been investigated using an in vitro model system wherein the trophoblast cells of mouse blastocysts attach to and outgrowth on tissue culture plates containing a complex medium. We now report that two extracellular matrix glycoproteins, fibronectin and laminin, when individually precoated on tissue culture plates promoted in vitro attachment and outgrowth of mouse blastocysts in serum-free medium. The kinetics of attachment and outgrowth processes in the presence of either of these two proteins were identical to that observed in complex, serum-containing medium. In contrast, plates containing a collagen matrix or pretreated with a variety of other serum proteins or various lectins failed to support in vitro attachment and outgrowth of blastocysts. Because all components of the culture medium are defined and both fibronectin and laminin are known components of the basement membrane of the endometrium, this in vitro system offers considerable advantages over the serum supplemented system to study in vitro implantation.  相似文献   

14.
Isolated stem cells from the midguts of Manduca sexta and Heliothis virescens can be induced to differentiate in vitro by either of two polypeptide factors. One of the peptides was isolated from culture medium conditioned by differentiating mixed midgut cells; we used high performance liquid chromatographic separation and Edman degradation of the most prominent active peak. It is a polypeptide with 30 amino acid residues (3,244 Da), with the sequence HVGKTPIVGQPSIPGGPVRLCPGRIRYFKI, and is identical to the C-terminal peptide of bovine fetuin. A portion of this molecule (HVGKTPIVGQPSIPGGPVRLCPGRIR) was synthesized and was found to be very active in inducing differentiation of H. virescens midgut stem cells. It was designated Midgut Differentiation Factor 1 (MDF1). Proteolysis of bovine fetuin with chymotrypsin allowed isolation of a pentamer, Midgut Differentiation Factor 2 (MDF2) with the sequence HRAHY corresponding to a portion of the fetuin molecule near MDF1. Synthetic MDF2 was also biologically active in midgut stem cell bioassays. Dose response curves indicate activity in physiological ranges from 10(-14) to 10(-9) M for MDF1 and 10(-15) to 10(-5) M for MDF2.  相似文献   

15.
16.
Trophic influences of alpha-MSH and ACTH4-10 on neuronal outgrowth in vitro   总被引:2,自引:0,他引:2  
Slices of foetal spinal cords in culture were used to establish possible trophic effects of alpha-melanocyte stimulating hormone (alpha-MSH) and a fragment of the adrenocorticotropic hormone (ACTH4-10) on the outgrowth of neurites from spinal neurons. The spinal cord slices were treated with peptides over a wide concentration range. Using monoclonal antibodies against (subunits of) neurofilament followed by immunofluorescence, we could show that the extension consisted mainly of axons. After 5 and 7 days, outgrowth was quantified with 2 different techniques, namely by visual scoring under phase contrast and by means of an ELISA for neurofilament protein. Both methods yielded the same dose-response profile. Both alpha-MSH and ACTH4-10 stimulated the formation of neurites in a dose-dependent manner, with a maximal stimulatory effect at 0.001-0.01 nM (ACTH4-10) or 0.1-1.0 nM (alpha-MSH). The maximal effect of the peptides was 30-40% compared to controls. We conclude that alpha-MSH and ACTH4-10 stimulate axonal outgrowth from foetal spinal cord slices in vitro in a dose-dependent way.  相似文献   

17.
Retinal ganglion neurons extend axons that grow along astroglial cell surfaces in the developing optic pathway. To identify the molecules that may mediate axon extension in vivo, antibodies to neuronal cell surface proteins were tested for their effects on neurite outgrowth by embryonic chick retinal neurons cultured on astrocyte monolayers. Neurite outgrowth by retinal neurons from embryonic day 7 (E7) and E11 chick embryos depended on the function of a calcium-dependent cell adhesion molecule (N-cadherin) and beta 1-class integrin extracellular matrix receptors. The inhibitory effects of either antibody on process extension could not be accounted for by a reduction in the attachment of neurons to astrocytes. The role of a third cell adhesion molecule, NCAM, changed during development. Anti-NCAM had no detectable inhibitory effects on neurite outgrowth by E7 retinal neurons. In contrast, E11 retinal neurite outgrowth was strongly dependent on NCAM function. Thus, N-cadherin, integrins, and NCAM are likely to regulate axon extension in the optic pathway, and their relative importance varies with developmental age.  相似文献   

18.
Wnt proteins promote neuronal differentiation in neural stem cell culture   总被引:36,自引:0,他引:36  
Wnt signaling is implicated in the control of cell growth and differentiation during CNS development from studies of mouse and chick models, but its action at the cellular level has been poorly understand. In this study, we examine the in vitro function of Wnt signaling in embryonic neural stem cells, dissociated from neurospheres derived from E11.5 mouse telencephalon. Conditioned media containing active Wnt-3a proteins are added to the neural stem cells and its effect on regeneration of neurospheres and differentiation into neuronal and glial cells was examined. Wnt-3a proteins inhibit regeneration of neurospheres, but promote differentiation into MAP2-positive neuronal cells. Wnt-3a proteins also increase the number of GFAP-positive astrocytes but suppress the number of oligodendroglial lineage cells expressing PDGFR or O4. These results indicate that Wnt-3a signaling can inhibit the maintenance of neural stem cells, but rather promote the differentiation of neural stem cells into several cell lineages.  相似文献   

19.
The molecular composition of the substrate on which neurons are cultured is critical for their attachment, survival, and extension of processes. The aim of the present experiments was to characterize the molecules in an extracellular matrix (ECM) extract that promotes the outgrowth of processes from cultured adult frog motoneurons. An extract was made of skeletal muscle ECM and tested as a substrate for cultured motoneurons. The average total process length of motoneurons cultured on this crude ECM extract is greater than when the neurons are cultured on concanavalin A, poly-l-lysine or mouse tumor (EHS) laminin. Gel filtration of the ECM extract yielded fractions with an increased specific activity for promoting process outgrowth. The most active fractions exhibit a single major polypeptide band of ca. 1 mD and two minor bands of ca. greater than 1 mD and 205 kD upon sodium dodecyl sulfate gel electrophoresis. Under reducing conditions, three major bands were seen of 340, 205, and 200 kD. Electron microscopy of rotary-shadowed ECM fractions showed macromolecules with a cross-shaped structure similar to vertebrate and invertebrate laminin, a rod-like molecule resembling vertebrate and invertebrate collagen type IV, and a third molecule similar in appearance to vertebrate fibrillin. These results represent the first step in analyzing the role of substrate molecules in promoting neuromuscular reinnervation. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号