首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed a method to determine the infinite inhibition concentrations (IICs) of antimicrobial agents. This method was based on finding the relative effectiveness of an inhibitor at various concentrations. Benzoic acid and parabens were tested on Saccharomyces bayanus, Hansenula sp., and Pseudomonas fluorescens. The relative effectiveness values of these compounds were established. A plot of the inhibitor concentration versus the reciprocal of relative effectiveness was linear. The chi-axis intercept was the concentration of the inhibitor which gave infinite microbial inhibition. For S. bayanus the IICs were 330, 930, 480, and 220 ppm (330, 930, 480, and 220 ml/liter) for benzoic acid and methyl-, ethyl-, and propylparabens, respectively. For Hansenula sp. the IIC was 180 ppm for benzoic acid. For P. fluorescens the IICs were 1,310, 960, and 670 ppm for methyl-, ethyl-, and propylparabens, respectively. Our results indicated that the IIC is affected by the growth medium. The advantages and applications of this method are discussed.  相似文献   

2.
Two Enterococcus strains (E. faecalis and E. faecium) isolated from 2 patients in an intensive care unit (blood and drain, respectively) were analyzed for susceptibility to 4 antibiotics (penicillin, vancomycin, gentamicin, streptomycin) by agar dilution standard method (MICs), time-kill and flow cytometry. We compared the data from classical methods of antibiotic susceptibility detection, that are compulsory 24 hrs long and flow cytometry results at 5 and 24 hrs cultivation. The results from both classical and flow cytometric analyses were highly cogent and revealed the fact that flow cytometry is very useful in early diagnosis of bacterial resistance to antibiotics.  相似文献   

3.
Bilirubin is a metabolic breakdown product of blood haem, of great biological and diagnostic importance. A new chemiluminescence (CL) method has been developed for the quantification of bilirubin. The method is combined with the flow injection analysis (FIA) technique and based on the inhibition effect of bilirubin on the CL from the lucigenin-hydrogen peroxide system in an alkaline medium. Under the optimum conditions, the decreased CL intensity was proportional to the concentration of bilirubin, in the range 0.0585-58.47 microg/mL. The detection limit estimated from the calibration graph was about 7.8826 ng/mL. The relative standard deviation (RSD) of 10 parallel measurements (1 x 10(-4) mol/L bilirubin) was 2.5%. Recoveries of bilirubin were found to fall in the range 94-97.5% using control sera. The method is interference-free, fast and easy to carry out.  相似文献   

4.
A clear imperative exists to generate radically different antibacterial technologies that will reduce the usage of conventional chemical antibiotics. Here we trace one route into this new frontier of drug discovery, a concept that we call the bacterial conjugation-based technologies (BCBT). One of the objectives of the BCBT is to exploit plasmid biology for combating the rising tide of antibiotic-resistant bacteria. Specifically, the concept utilizes conjugationally delivered plasmids as antimicrobial agents, and it builds on the accumulated work of many scientists dating back to the discoveries of conjugation and plasmids themselves. Each of the individual components that comprise the approach has been demonstrated to be feasible. We discuss the properties of bacterial plasmids to be employed in BCBT.  相似文献   

5.
Polyphenols as antimicrobial agents   总被引:2,自引:0,他引:2  
Polyphenols are secondary metabolites produced by higher plants, which play multiple essential roles in plant physiology and have potential healthy properties on human organism, mainly as antioxidants, anti-allergic, anti-inflammatory, anticancer, antihypertensive, and antimicrobial agents. In the present review the antibacterial, antiviral, and antifungal activities of the most active polyphenol classes are reported, highlighting, where investigated, the mechanisms of action and the structure-activity relationship. Moreover, considering that the microbial resistance has become an increasing global problem, and there is a compulsory need to find out new potent antimicrobial agents as accessories to antibiotic therapy, the synergistic effect of polyphenols in combination with conventional antimicrobial agents against clinical multidrug-resistant microorganisms is discussed.  相似文献   

6.
7.
8.
Radiopharmaceuticals: new antimicrobial agents   总被引:1,自引:0,他引:1  
Small antimicrobial peptides are good candidates for new antimicrobial agents. A scintigraphic approach to studying the pharmacokinetics of antimicrobial peptides in animals has been developed. The peptides were safely and reproducibly labelled with technetium-99m and, after intravenous injection of the radiolabelled peptides into infected animals, scintigraphy allowed real-time quantification of the peptide in the various body compartments. Antimicrobial peptides rapidly accumulated at sites of infection but not at sites of sterile inflammation, indicating that radiolabelled antimicrobial peptides could be used in detection of infection. These radiopharmaceuticals enabled the efficacy of antibacterial therapy in animals to be monitored. The scintigraphic approach provides a useful method for investigating the pharmacokinetics of small peptides in animals.  相似文献   

9.
Antimicrobial agents may interact synergistically when both drugs are present at the infected site for an adequate period of time at sufficient concentrations. Generally speaking, the agents in the combination show different tissue distributions and pharmacokinetics. By co-encapsulation of the drugs in a drug carrier, like liposomes, parallel tissue distributions of both drugs may be ensured and drug concentrations at the site of infection may be increased. In this presentation therapeutic efficacy of liposome-co-encapsulated gentamicin (GN) and ceftazidime (CZ) will be shown in a GN-CZ-susceptible and GN-CZ-resistant Klebsiella pneumoniae-pneumonia in rats.  相似文献   

10.
Sensitivity of biofilms to antimicrobial agents   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
The oxazolidinone class of antimicrobials represents a promising advance in the fight against resistant Gram-positive bacterial infections. Four novel oxazolidinone antimicrobial compounds, each containing a benzodioxin ring system, have been prepared. The general synthesis of each compound begins with the construction of a benzodioxin ring system containing a nitro substituent that ultimately becomes the nitrogen of the oxazolidinone ring. Three of the compounds utilize high yielding 'click chemistry' in their final step. The antimicrobial activities of the new oxazolidinones have been measured and the MIC against Staphylococcus aureus for one of the antimicrobials was determined to be 2-3 microg/mL, which is comparable to the well-known oxazolidinone, linezolid.  相似文献   

13.
《Inorganica chimica acta》1988,154(1):109-114
The three-component system consisting of Co4(CO)12, Co2(CO)8 and HCo(CO)4 was analyzed by means of IR spectroscopy. A quantitative method was developed in order to enable the precise calculation of the concentrations of all three compounds simultaneously. The quantitative analysis was based upon the intensity of the bridging CO stretching bands at 1858 cm−1 (A2) and 1867 cm−1 (A1) of the polynuclear carbonyls, and the terminal CO symmetric stretching band of HCo(CO)4 at 2116 cm−1 (A3). The mathematical expression for the concentrations of the three compounds required the precise knowledge of at least one of the four extinction coefficients of either Co4(CO)12, ϵJ1 and ϵJ2 or Co2(CO)8, ϵK1 and ϵK2. The reference extinction coefficient was ϵK2, because Co2(CO)8 was employed as the starting compound in all experiments performed in this study. In order to determine the extinction coefficient of HCo(CO)4 at 2116 cm−1, ϵ3, intensities of this band were plotted as function of the corresponding concentrations of HCo(CO)4, which were calculated by means of the three- component system method; from the slope of the straight line ϵ3 could be directly calculated.  相似文献   

14.
The wide variety of potent biological activities of natural and synthetic isoquinoline alkaloids encouraged us to develop novel antimicrobial isoquinoline compounds. We synthesized a variety of differently functionalized 1-pentyl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines (THIQs), including dihydroisoquinolinium salts (2 and 5), methyl pentanoate-THIQ (6), 1-pentanol-THIQ (7), ester derivatives (815) and carbamate derivatives (1623). We employed classic intramolecular Bischler–Napieralski cyclodehydration to generate the isoquinoline core. All the structures were characterized by nuclear magnetic resonance and mass spectrometry. The bactericide and fungicide activities were evaluated for all the synthesized compounds and structure-activity relationships were established. Many compounds exhibited high and broad-range bactericidal activity. Fluorophenylpropanoate ester 13 and the halogenated phenyl- (17, 18) and phenethyl carbamates (21, 22) exerted the most remarkable bactericidal activity. However, few compounds displayed antifungal activity against most of the fungi tested. Among them, chlorinated derivatives like chlorobenzoate and chlorophenylpropanoate esters (10 and 14, respectively) and chlorophenethyl carbamate 22, exhibited the greatest antifungal activity.  相似文献   

15.
Novel piperidinyloxy oxazolidinone antimicrobial agents.   总被引:1,自引:0,他引:1  
Oxazolidinone antibacterial agents, where the N-substituted piperazinyl group of eperezolid was replaced with a N-substituted piperidinyloxy moiety, were synthesized and shown to be active against a variety of resistant and susceptible Gram-positive organisms. The effect of ring size, positional isomerism, and fluorine substitution on antibacterial activity was examined.  相似文献   

16.
A series of 1,3,5-triazine derivatives that contain 4-amino-2-trifluoromethyl-benzonitrile, 8-hydroxyquinoline, and different piperazines as substituents at the carbon atoms of the triazine ring have been synthesized by a simple and efficient synthetic protocol. The chemical structures of the compounds were elucidated with the aid of IR, 1H NMR and 13C NMR spectroscopy, and elemental analysis. The antimicrobial activity of the compounds was tested against seven bacteria (Staphylococcus aureus MTCC 96, Bacillus cereus MTCC 619, Escherichia coli MTCC 739, Pseudomonas aeruginosa MTCC 741, Klebsiella pneumoniae MTCC 109, Salmonella typhi MTCC 733, Proteus vulgaris MTCC 1771) and four fungi (Aspergillus niger MTCC 282, Aspergillus fumigatus MTCC 343, Aspergillus clavatus MTCC 1323, Candida albicans MTCC 183). The results indicate that some of the novel s-triazines have noteworthy activity in minimum inhibitory concentration as well as agar diffusion tests.  相似文献   

17.
New plasmid-mediated resistances to antimicrobial agents   总被引:2,自引:0,他引:2  
  相似文献   

18.
Mechanisms of biofilm resistance to antimicrobial agents   总被引:47,自引:0,他引:47  
Biofilms are communities of microorganisms attached to a surface. It has become clear that biofilm-grown cells express properties distinct from planktonic cells, one of which is an increased resistance to antimicrobial agents. Recent work has indicated that slow growth and/or induction of an rpoS-mediated stress response could contribute to biocide resistance. The physical and/or chemical structure of exopolysaccharides or other aspects of biofilm architecture could also confer resistance by exclusion of biocides from the bacterial community. Finally, biofilm-grown bacteria might develop a biofilm-specific biocide-resistant phenotype. Owing to the heterogeneous nature of the biofilm, it is likely that there are multiple resistance mechanisms at work within a single community. Recent research has begun to shed light on how and why surface-attached microbial communities develop resistance to antimicrobial agents.  相似文献   

19.
With growing concerns over multidrug resistance microorganisms, particularly strains of bacteria and fungi, evolving to become resistant to the antimicrobial agents used against them, the identification of new molecular targets becomes paramount for novel treatment options. Recently, the use of new treatments containing multiple active ingredients has been shown to increase the effectiveness of existing molecules for some infections, often with these added compounds enabling the transport of a toxic molecule into the infecting species. Flavonoids are among the most abundant plant secondary metabolites and have been shown to have natural abilities as microbial deterrents and anti-infection agents in plants. Combining these ideas we first sought to investigate the potency of natural flavonoids in the presence of efflux pump inhibitors to limit Escherichia coli growth. Then we used the natural flavonoid scaffold to synthesize non-natural flavanone molecules and further evaluate their antimicrobial efficacy on Escherichia coli, Bacillus subtilis and the fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus. Of those screened, we identified the synthetic molecule 4-chloro-flavanone as the most potent antimicrobial compound with a MIC value of 70 µg/mL in E. coli when combined with the inhibitor Phe-Arg-ß-naphthylamide, and MICs of 30 µg/mL in S. cerevesiae and 30 µg/mL in C. neoformans when used alone. Through this study we have demonstrated that combinatorial synthesis of non-natural flavonones can identify novel antimicrobial agents with activity against bacteria and fungi but with minimal toxicity to human cells.  相似文献   

20.
A novel series of thiazolidinone derivatives, namely 4-{4-dimethylamino-6-[4-oxo-2-phenyl-5-(4-pyridin-2-yl-piperazin-1-ylmethyl)-thiazolidin-3-yl]-[1,3,5]-triazin-2-yloxy}-1-methyl-1H-quinolin-2-ones, have been synthesized from the key intermediate 4-(4-amino-6-dimethylamino-[1,3,5]-triazin-2-yloxy)-1-methyl-1H-quinolin-2-one (5). Compound 5 was condensed with various aldehydes to give Schiff base derivatives, which after cyclization gave thiazolidinones that were linked with 1-pyridin-2-yl-piperazine to obtain the target compounds. The newly synthesized compounds were evaluated for their antimicrobial activity against eight bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhi, Proteus vulgaris, Shigella flexneri) and four fungi (Aspergillus niger, Candida albicans, Aspergillus fumigatus, Aspergillus clavatus).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号